АВС_Лек4_2013 / ИнтернентСсылкиАссемблерЛогика
Другие побитовые логические операции[править | править исходный текст]
В распространенных языках программирования встроенными средствами реализуются только четыре побитовые логические операции: И, ИЛИ, НЕ и исключающее ИЛИ. Для задания произвольной побитовой логической операции вполне достаточно перечисленных, и, более того, как следует из теории булевых функций, можно ограничиться ещё меньшим набором базовых операций. Есть также языки программирования, где существует встроенная возможность выполнить любую бинарную логическую операцию побитово. Например, в PL/Iесть встроенная функция BOOL, третий аргумент которой предназначен для указания произвольной логической операции, которую необходимо побитово применить к первым двум аргументам[3].
Содержание
- Алгебра логики
- Содержание
- Определение[править | править исходный текст]
- Аксиомы[править | править исходный текст]
- Логические операции[править | править исходный текст]
- Свойства логических операций[править | править исходный текст]
- История[править | править исходный текст]
- См. Также[править | править исходный текст] Булева алгебра
- Содержание
- Некоторые свойства[править | править исходный текст]
- Основные тождества[править | править исходный текст]
- Примеры[править | править исходный текст]
- Принцип двойственности[править | править исходный текст]
- Представления булевых алгебр[править | править исходный текст]
- Аксиоматизация[править | править исходный текст]
- См. Также[править | править исходный текст]
- Примечания[править | править исходный текст]
- Литература[править | править исходный текст]
- Булева функция
- Содержание
- Основные сведения[править | править исходный текст]
- Нульарные функции[править | править исходный текст]
- Унарные функции[править | править исходный текст]
- Бинарные функции[править | править исходный текст]
- Тернарные функции[править | править исходный текст]
- Полные системы булевых функций[править | править исходный текст]
- Суперпозиция и замкнутые классы функций[править | править исходный текст]
- Тождественность и двойственность[править | править исходный текст]
- Полнота системы, критерий Поста[править | править исходный текст]
- Представление булевых функций[править | править исходный текст]
- Дизъюнктивная нормальная форма (днф)[править | править исходный текст]
- Конъюнктивная нормальная форма (кнф)[править | править исходный текст]
- Алгебраическая нормальная форма (анф или полином Жегалкина)[править | править исходный текст]
- Классификация булевых функций[править | править исходный текст]
- См. Также[править | править исходный текст]
- Литература[править | править исходный текст]
- Битовые операции
- Содержание
- Побитовые логические операции[править | править исходный текст]
- Побитовое отрицание (not) [править | править исходный текст]
- Побитовое и (and) [править | править исходный текст]
- Побитовое или (or) [править | править исходный текст]
- Сложение по модулю два (xor) [править | править исходный текст]
- Другие побитовые логические операции[править | править исходный текст]
- Битовые сдвиги[править | править исходный текст]
- В теории сложности алгоритмов[править | править исходный текст]
- Связь с другими науками[править | править исходный текст] Битовые операции и математическая логика[править | править исходный текст]
- Обобщение операций на булеву алгебру[править | править исходный текст]
- Битовые операции как основа цифровой техники[править | править исходный текст]
- Практические применения[править | править исходный текст]
- Физическая реализация битовых операций[править | править исходный текст]
- Схемы аппаратной логики[править | править исходный текст]
- Использование в программировании[править | править исходный текст]
- См. Также[править | править исходный текст]
- Примечания[править | править исходный текст]
- Навигация
- Двоичный сумматор[править | править исходный текст]