АВС_Лек4_2013 / ИнтернентСсылкиАссемблерЛогика
Представления булевых алгебр[править | править исходный текст]
Можно доказать, что любая конечная булева алгебра изоморфна булевой алгебре всех подмножеств какого-то множества. Отсюда следует, что количество элементов в любой конечной булевой алгебре будет степенью двойки.
Знаменитая теорема Стоунаутверждает, что любая булева алгебра изоморфна булевой алгебре всех открыто-замкнутых множеств какого-токомпактноговполне несвязногохаусдорфоватопологического пространства.
Содержание
- Алгебра логики
- Содержание
- Определение[править | править исходный текст]
- Аксиомы[править | править исходный текст]
- Логические операции[править | править исходный текст]
- Свойства логических операций[править | править исходный текст]
- История[править | править исходный текст]
- См. Также[править | править исходный текст] Булева алгебра
- Содержание
- Некоторые свойства[править | править исходный текст]
- Основные тождества[править | править исходный текст]
- Примеры[править | править исходный текст]
- Принцип двойственности[править | править исходный текст]
- Представления булевых алгебр[править | править исходный текст]
- Аксиоматизация[править | править исходный текст]
- См. Также[править | править исходный текст]
- Примечания[править | править исходный текст]
- Литература[править | править исходный текст]
- Булева функция
- Содержание
- Основные сведения[править | править исходный текст]
- Нульарные функции[править | править исходный текст]
- Унарные функции[править | править исходный текст]
- Бинарные функции[править | править исходный текст]
- Тернарные функции[править | править исходный текст]
- Полные системы булевых функций[править | править исходный текст]
- Суперпозиция и замкнутые классы функций[править | править исходный текст]
- Тождественность и двойственность[править | править исходный текст]
- Полнота системы, критерий Поста[править | править исходный текст]
- Представление булевых функций[править | править исходный текст]
- Дизъюнктивная нормальная форма (днф)[править | править исходный текст]
- Конъюнктивная нормальная форма (кнф)[править | править исходный текст]
- Алгебраическая нормальная форма (анф или полином Жегалкина)[править | править исходный текст]
- Классификация булевых функций[править | править исходный текст]
- См. Также[править | править исходный текст]
- Литература[править | править исходный текст]
- Битовые операции
- Содержание
- Побитовые логические операции[править | править исходный текст]
- Побитовое отрицание (not) [править | править исходный текст]
- Побитовое и (and) [править | править исходный текст]
- Побитовое или (or) [править | править исходный текст]
- Сложение по модулю два (xor) [править | править исходный текст]
- Другие побитовые логические операции[править | править исходный текст]
- Битовые сдвиги[править | править исходный текст]
- В теории сложности алгоритмов[править | править исходный текст]
- Связь с другими науками[править | править исходный текст] Битовые операции и математическая логика[править | править исходный текст]
- Обобщение операций на булеву алгебру[править | править исходный текст]
- Битовые операции как основа цифровой техники[править | править исходный текст]
- Практические применения[править | править исходный текст]
- Физическая реализация битовых операций[править | править исходный текст]
- Схемы аппаратной логики[править | править исходный текст]
- Использование в программировании[править | править исходный текст]
- См. Также[править | править исходный текст]
- Примечания[править | править исходный текст]
- Навигация
- Двоичный сумматор[править | править исходный текст]