logo search
Ответы по алгему

34. Угол между двумя пересекающимися прямыми в пространстве. Расстояние от точки до прямой в пространстве.

Нахождение угла между двумя пересекающимися прямыми в пространстве методом координат сводится к нахождению координат направляющих векторов этих прямых и последующему определению угла между ними. При этом все рассуждения из предыдущего пункта, касающиеся определения угла между пересекающимися прямыми через угол между их направляющими векторами, остаются справедливыми.

Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz, и заданы две пересекающиеся прямые a и b уравнениями прямой некоторого вида (смотрите статью виды уравнений прямой в пространстве). По уравнениям прямых мы можем определить координаты их направляющих векторов. Итак, и - направляющие векторы заданных пересекающихся прямых a и b соответственно. Тогда косинус угла между пересекающимися прямыми a и b в пространстве вычисляется по формуле , а сам угол – по формуле .

Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz, задана точка , прямая a и требуется найти расстояние от точки А до прямой a.

Покажем два способа, позволяющих вычислять расстояние от точки до прямой в пространстве. В первом случае нахождение расстояния от точки М1 до прямой a сводится к нахождению расстояния от точки М1 до точки H1, где H1 - основание перпендикуляра, опущенного из точки М1 на прямую a. Во втором случае расстояние от точки до плоскости будем находить как высоту параллелограмма.

Итак, приступим.