1.1 Асимптотическое поведение решений системы
Система (1.3) в векторной форме имеет вид:
глк, в быстром времени
При е = 0 система (2.1) переходит в гамильтонову систему
являющуюся системой «быстрых движений» для системы (2.1). 1. Изучение системы (2.2). Пусть функции
определены и непрерывны вместе со всеми своими первыми частными производными в некоторой области G эвклидова пространства E2+i переменных х, у, zi,..., zi. Как известно, система (2.2) имеет первый интеграл
и (2.3) представляет собой семейство всех фазовых траекторий системы(2.2) на кажтгой плоскости z = const области G.
Возьмем некоторую точку (х, у, z) из G, не являющуюся положением равновесия системы (2.2). По известной теореме существования и единственности решений системы обыкновенных дифференциальных уравнений, через эту точку пройдет только одна фазовая траектория системы
(2.2). Уравнение этой траектории запишется в виде:
(см. (2.3)).
Докажем следующее утверждение.
Пусть траектория (2.4) замкнута и целиком лежит внутри области G. Тогда в пространстве E2+i существует некоторая окрестность G этой траектории (2.4) такая, что
фазовые траектории системы (2.2), проходящие через точки G, замкнуты и целиком лежат в G;
уравнение (2.3) при каждой паре (/г, z) определяет одну и только одну фазовую траекторию системы (2.2), расположенную в G;
на каждой фазовой траектории (2.3) системы (2.2), лежащей в G, можно выбрать по одной точке , гладко зависящей от
В самом деле, в силу известных свойств гамильтоновой системы, в пространстве E2+i существует некоторая окрестность G траектории (2.4) (Gd G), в которой выполняется условие 1). Выделим из G ту окрестность траектории (2.4), в которой выполняются и условия 2), 3). Для этого возьмем поверхность, пересекающую каждую плоскость z = const области G
о о по нормали в точке (х, у, z) к фазовой траектории системы (2.2), проходящей через эту точку. Уравнение этой поверхности имеет вид:
Следовательно, точка (х, у, z, h) эвклидова пространства Ј"2+z переменных х, у, z, h удовлетворяет системе
Левые части системы (2.5) определены и непрерывны вместе со всеми своими частными производными в области Г: (#, у, z) Ј G, --ос <^ /г<^оо. Якобиан системы (2.5)
отличен от нуля в точке (х, у, z, /г), так как точка (х,?/, z) не является положением равновесия системы (2.2). Поэтому, по теореме о неявных функциях, в некоторой окрестности Г° точки (х, у, z, h) (Г°С Г) система (2.5) разрешима относительно х и у:
причем
являются однозначными функциями от /г, zi,..., zx, непрерывными по совокупности этих переменных вместе со всеми своими первыми частными производными. Следовательно, целые фазовые траектории системы (2.2), проходящие через точки
составляют искомую окрестность G траектории (2.4). Пусть
-- решение системы (2.2) с начальными условиями
Решение (2.6) системы (2.2) является периодическим, поскольку описывает замкнутую траекторию (2.3). Тогда, полагая получим:
2. Изучение системы (2.1). Исследуем решение
системы (2.1) с начальными условиями
на конечном промежутке времени Uo, L]. Имеет место
ТЕОРЕМА 1. Пусть функции 1
определены и непрерывны в вместе со всеми своими частными произвооными до второгопорядка включительно, а функции непрерывны в вместе со всеми своими первыми частными производными. Тогда существует число такое, что при любом на конечном промежутке времени [to, L]:
1) решение системы (2.1) остается в G и функции h с точностью до величин порядка О (г) совпадают соответственно с функциями представляющими собой решение следующей автономной системы не зависящих от е обыкновенных дифференциальных уравнений, правые части которых выражаются через правые части системы (2.1):
циал дуги фазовой траектории (2.3), интегрирование ведется при произвольно фиксированной паре
Предполагаем, что решение системы
(2.8)
имеет начальные значения
2) Функции х (I, е), у (г, е) с точностью до величин порядка О (е) совпадают соответственно с функциями
Здесь ф0 определяется из соотношений постоянная величина, v (t, e) -- решение уравнения:
Доказательство. Прежде всего установим ряд свойств решения (2.6) системы (2.2), имеющих место при тех требованиях гладкости, которые указаны в формулировке теоремы 1.
Свойство 1. Периодом решения (2.6) является функция
следовательно, эта функция непрерывна в Gh вместе со всеми своими частными производными до второго порядка включительно. Действительно, из (2.2) следует соотношение интегрирование которого дает формулу (2.9). Из указанной в условиях теоремы гладкости функций
следует соответствующая гладкость функции Т(h, z) в Gh.
Свойство 2. Функции определены и непрерывны в области -- вместе со всеми своими частными производными до второго порядка включительно.
В самом деле, в силу указанной гладкости правых частей системы (2.2), из (2.5), по теореме о неявных функциях, следует, что функции а (/г, z), Р (/г, z) непрерывны в Gh вместе со всеми своими частными производными до второго порядка включительно. Далее, из теорем о существовании и единственности, о непрерывности и непрерывной дифференцируемости решений системы обыкновенных дифференциальных уравнений по начальным значениям и по параметрам следует, что функции вместе со всеми своими частными производными до второго порядка включительно, непрерывны в области -- . Следовательно, функции обладают свойством 2 как сложные функции.!
Свойство 3. Пусть D -- некоторая ограниченная замкнутая об
ласть, содержащаяся в Gh. Тогда на множестве -- функции вместе со всеми своими частными производными до второго порядка включительно ограничены.
Свойство 3 является следствием свойства 2, так как периодичность функций позволяет рассматривать их в замкнутой и ограниченной области
Свойство 4.
так как решение (2.6) описывает фазовую траекторию (2.3). Дифференцирование соотношения (2.10) по Zj дает Свойство 5.
(2.10)
где
(2.11)
Свойство 6.
(2.12)
Свойство 8, Для любой функции y (х, у, z), непрерывной в G, справедливо равенство
где
и интегрирование ведется при произвольно фиксированных
Действительно, вдоль траекторий (2.3), в силу (2.7) и свойства 6, имеем:
что дает:
Перейдем к непосредственному изучению системы (2.1). Заменим переменные х, 2/,%,..., Zi переменными ф, /?, z,,..., z по формуле:
что, в силу (2.10), дает:
Преобразование (2.13) -- невырожденное в рассматриваемой области поскольку там
(см. свойство 7). В силу (2.12), замена (2.13) переводит систему (2.1) в следующую:
Система (2.14) является линейной алгебраической по отношению к функциям
с определителем
и поэтому она единственным образом разрешима относительно этих функций. По правилу Крамера имеем:
или, в силу свойств 7, 6, 5:
Пусть при
Из последнего соотношения следует:
Так как в противном случае
что противоречит определению
Оценим
В силу (2.19), (2.20) и (2.22),
или, по формуле конечных приращений,
(применимость формулы конечных приращений следует из (2.24)). Следовательно, в силу ограниченности функций w (v), В (ц, v, е) и всех их частных производных в области значений, по (2.33), (2.34) имеем:
Поэтому
Из (2.36) следует:
Соотношения (2.33), (2.34), (2.37), (2.38) полностью доказывают теорему об усреднении (м° = max (М5, Мв), е0 = min(a,^)).
Вернемся к доказательству теоремы 1. Так как система (2.15) типа (2.19), то, по теореме об усреднении, существует число е0 > 0 такое, что при любых eg (0, е0], t 6 [*<>> L] решение {ф (t, е), h (t, е), z (t, г)} системы (2.15) с начальными условиями
и решение {ф (t, e), h(t), z (t)} усредненной системы (2.17) с теми же начальными условиями
связаны следующим образом: точка {h (t, e), z (t, г)} остается в некоторой и выполняются соотношения:
окрестность решения)). А так как, по (2.13),
и так как точка {h (Ј, е), z (t, е)} остается в Ghp CZ Gh, то на отрезке [tQ, L] при любом 8 g (0, е0] решение {х (t, е),?/ (Ј, е), z (Ј, г)} системы (2.1) остается в G, причем, по свойству 3,
В силу же (2.13),
и потому соотношения (2.39), (2.40) доказывают первую часть теоремы 1. Докажем вторую часть теоремы 1. По формуле конечных приращений, из (2.41) получаем:
Возникает вопрос, как ведут себя решения системы (2.1) во всей указанной окрестности Go (включая и положения равновесия {/ (z), g (z), z} системы (2.3)). На этот вопрос отвечают теорема 1 и нижеследующие теоремы 2 и 3.
ТЕОРЕМА 2. Пусть в окрестности Go выполнены условия теоремы 1, касающиеся гладкости правых частей системы (2.1). Тогда найдется число 8° у> О, такое, что при любом г Ј (0, е°] (е° <^ а) на конечном промежутке времени [to,L] решение {х (t, е), у (t, е), z (t, г)} системы (2.1) с начальными условиями вырожденной системы
остается в Go и с точностью до величин порядка О (г) совпадает с решением
проходящим при t -- to через то же положение равновесия
(предполагается, что решение {х (t), у (t), z (t)} остается в G на [t0, L]). Доказательство. Не нарушая общности рассуждений, будем считать, что в Go
1 1 так как замена переменных х, у, zx,..., zt на х, у, z1?.... z> и Н
на Я1, где
сохраняет вид системы (2.1), но дает условия (2.54). Следовательно, в силу.
Это решение на конечном промежутке времени [t0, L] составляет некоторое замкнутое ограниченное множество FQ CZ G0 и поэтому найдется ро > 0 такое, что G00 С G0 (GQ0 -- р0-окрестность F0).
Положим
В силу (2.56) и (2.1), вдоль решения {х (Ј, е), у (t, е), z (t, &)} имеем:
Следовательно, по формуле Тейлора, примененной к функциям
относительно х, у в G00, в силу (2.54), (2.58), получим на [t0, t^ (г)]:
(формула Тейлора применима в G00 относительно х, у, так как прямолинейный отрезок, соединяющий любые две точки (я, у, z) и (0, 0, z) из Goo, содержится в Goo, поскольку каждое сечение области G00 плоскостью z = const представляет собой круг с центром в точке (0, 0, z), по определению Goo).
Функция О2 (х, у, е), в силу указанной в условиях теоремы гладкости правых частей системы (2.1), является однородной квадратичной относительно х, у, е с ограниченными в Goo коэффициентами, и поэтому
постоянная величина).
С другой стороны, по формуле Тейлора, в силу (2.54) имеем в G00
и так как при (х, у, z)
то соотношение (2.61), в силу (2.57), дает на [Ј0, t(е)]:
Но, по (2.56) - (2.58) и (2.63),
Соотношения
дают:
откуда следует, что на отрезке
Но так как, в силу
т. е. окончательно, по (2.64), (2.67),
- Ведение
- Применения регулярного возмущения
- 1. Асимптотическое поведение решений дифференциальных уравнений с малым параметром
- 1.1 Асимптотическое поведение решений системы
- 2. Регулярные возмущения.
- 2.1 Асимптотические методы
- 2.2 Регулярные возмущения решений задачи Коши для обыкновенных дифференциальных уравнений
- 2.3 Существование решении возмущенной задачи
- Литература
- Асимптотика решений уравнения Бесселя, нули функции Бесселя.
- Решение дифференциальных уравнений
- 2.2. Исследование асимптотики
- 5. Решение дифференциальных уравнений.
- Асимптотика решений уравнения Бесселя, нули функции Бесселя.
- Решение дифференциальных уравнений
- Решение дифференциальных уравнений
- 5.1.1 Асимптотика первого порядка
- Решение дифференциальных уравнений
- Оценки точности разностных схем для решения дифференциальных уравнений в частных производных