Метод Ньютона (метод касательных). Решение систем нелинейных алгебраических уравнений

курсовая работа

2.2 Метод Ньютона

Идея метода заключается в линеаризации уравнений системы , что позволяет свести исходную задачу решения СНУ к многократному решению системы линейных уравнений.

Пусть известно приближение xi(k) решения системы нелинейных уравнений xi*. Введем в рассмотрение поправку xi как разницу между решением и его приближением:

,

Подставим полученное выражение для xi* в исходную систему.

Неизвестными в этой системе нелинейных уравнений являются поправки xi. Для определения xi нужно решить эту систему. Но решить эту задачу так же сложно, как и исходную. Однако эту систему можно линеаризовать, и, решив ее, получить приближенные значения поправок xi для данного приближения, т.е. xi(k). Эти поправки не позволяют сразу получить точное решение , но дают возможность приблизиться к решению, - получить новое приближение решения

,

Для линеаризации системы следует разложить функцию fi в ряды Тейлора в окрестности xi(k), ограничиваясь первыми дифференциалами.

Полученная система имеет вид:

,

Все коэффициенты этого уравнения можно вычислить, используя последнее приближение решения xi(k). Для решения системы линейных уравнений при n=2,3 можно использовать формулы Крамера, при большей размерности системы n - метод исключения Гаусса.

Значения поправок используются для оценки достигнутой точности решения. Если максимальная по абсолютной величине поправка меньше заданной точности , расчет завершается. Таким образом, условие окончания расчета:

Можно использовать и среднее значение модулей поправок:

В матричной форме систему можно записать как:

где: , - матрица Якоби (производных),

- вектор поправок

- вектор-функция

W(X(k)) - матрица Якоби, вычисленная для очередного приближения.

F(X(k)) - вектор-функция, вычисленная для очередного приближения.

Выразим вектор поправок ?X(k) из :

где W-1 - матрица, обратная матрице Якоби.

Окончательно формула последовательных приближений метода Ньютона решения СНУ в матричной форме имеет вид:

Достаточные условия сходимости для общего случая имеют очень сложный вид, и на практике проверяются редко. Нужно отметить, что метод сходится очень быстро (за 3 - 5 итераций), если det|W| 0 и начальное приближение X(0) выбрано близким к решению (отличаются не более чем на 10%).

Алгоритм решения СНУ методом Ньютона состоит в следующем:

1) Задается размерность системы n, требуемая точность ?, начальное приближенное решение .

2) Вычисляются элементы матрицы Якоби

3) Вычисляется обратная матрица .

4) Вычисляется вектор функция , , .

5) Вычисляются вектор поправок

6) Уточняется решение

7) Оценивается достигнутая точность

8) Проверяется условие завершения итерационного процесса ???

Если оно не соблюдается, алгоритм выполняется снова с пункта 2.

Для уменьшения количества арифметических действий Рафсон предложил не вычислять обратную матрицу W-1, а вычислять поправки как решение СЛУ: , данный метод получил название метод Ньютона-Рафсона.

Достоинством методов Ньютона является быстрая сходимость, недостатками - сложность расчетов (вычисление производных, многократное решение системы линейных уравнений), сильная зависимость от начального приближения.

Делись добром ;)