logo
Основная теорема алгебры

4. Доказательство основной теоремы

Прежде чем приступить к формальному доказательству, наметим его идею. Пусть -полином, рассматриваемый как функция от комплексной переменной .Представим себе "график" функции , считая , что значения изображаются на горизонтальной плоскости, перпендикулярной к плоскости чертежа, а значения откладываются вверх в направлении оси . Мы установим, что являются непрерывными функциями от на всей плоскости комплексной переменной. Функция от комплексной переменной называется непрерывной в точке , если достаточно близким к значениями соответствует сколь угодно близкие к значения .В более точных терминах - для любого найдется такое , что , как только .

Непрерывность дает основания представлять себе график в виде непрерывной поверхности, накрывающей плоскость , и местами доходящей до этой плоскости. Собственно говоря, нам и нужно доказать, что существует такое значение , в котором , и, тем самым, , т.е. что поверхность доходит до плоскости в точке . Мы докажем, что если дана точка на поверхности ,которая расположена выше плоскости , то в ее окрестности найдется точка поверхности расположенная ниже данной точки. Тогда останется только доказать, что на поверхности существует самая низкая точка, скажем, при . Она не может находиться выше плоскости , ибо тогда она была бы самой низкой точкой. Следовательно, и , следовательно , т.е. корень полинома .

Теперь приступим к доказательству основной теоремы, разбив это доказательство на цепочку лемм.

Лемма 1. Дан полином c нулевым свободным членом.

Тогда для любого найдется такое , что , как только .

Доказательство: Пусть . Тогда

Положим

Если

то

что и требовалось доказать.

Лемма 2. Полином есть непрерывная функция во всех точках плоскости комплексной переменной.

Доказательство: Пусть дан полином и точка . Расположим полином по степеням

,

Тогда так что

Правая часть есть полином от с нулевым свободным членом.

По лемме 1 для любого найдется такое, что как только что и требовалось доказать.

Лемма 3. Модуль полинома есть непрерывная функция.

Доказательство: Из неравенства следует, что для данного то , которое "обслуживает" , подходит и для . Действительно, при имеем

Лемма 4. (о возрастании модуля полинома). Если -полином, отличный от константы, то для любого М>0 существует такое R>0, что M,как только .

Это означает, что любая горизонтальная плоскость отрезает от поверхности конечный кусок, накрывающий часть круга |z|?R.

Доказательство: Пусть

где полином от c нулевым свободным членом.

В силу леммы 1 для найдется такое , что при , будет . Модуль может быть сделан сколь угодно большим, именно, при будет . Возьмем Тогда при будет

и так что

Лемма 5. Точная нижняя грань значений достигается, т.е. существует такое, что при всех .

Доказательство: Обозначим точную нижнюю грань через . Возьмем последовательностью стремящихся к сверху. Каждая из этих чисел не является нижней гранью значений , ибо -точная нижняя грань. Поэтому найдутся такие, что . Воспользуемся теперь леммой о возрастании модуля. Для найдем такое , что при будет Отсюда следует, что при все . Последовательностью оказалась ограниченной, и из нее можно извлечь сходящуюся подпоследовательность . Пусть ее предел равен . Тогда в силу непрерывности . Кроме того, . Поэтому Итак , что и требовалось доказать.

Лемма 6. (Лемма Даламбера). Пусть полином отличный от константы, и пусть . Тогда найдется такая точка, что

Геометрический смысл этой леммы: если на поверхности дана точка, находящаяся выше плоскости , то на ней найдется другая точка, расположенная ниже первой.

Доказательство: Расположим полином по степеням

Тогда Идея доказательства состоит в том, чтобы за счет первого отличного от нуля слагаемого "откусить кусочек" от , а влияние дальнейших слагаемых сделать незначительным. Пусть - первое отличное от нуля слагаемое после , так что (если k>1). Такое слагаемое имеется, так как не константа. Тогда

+

+( +…+ ))=

= c0 (1+ +).

Здесь

=

есть полином от с нулевым свободным членом. По лемме 1 для = найдется такое ,что ||<, как только ||<. Положим =() и . Тогда

.

Выберем так, что . Для этого нужно взять . Далее, положим , т.е. возьмем . При таком выборе будет . Теперь положим

при и . Тогда и

||=.

Лемма доказана.

Заметим, что с тем же успехом мы могли бы взять при так что при k>1 (т.е. в случае, когда -корень кратности полинома )имеется k направлений спуска по поверхности . Они разделяются направлениями подъема при

Действительно, в этих направлениях

и

Так что если есть корень производной кратности , то поверхность в окрестности точки "гофрирована" так, что на ней имеется "долин" cпуска, раздельных "хребтами" подъема.

Теорема: Полином с комплексными коэффициентами, отличный от постоянной, имеет по меньше мере один комплексный корень (т.е. поле , комплексных чисел алгебраически замкнуто).

Доказательство: Пусть - данный полином, отличный от константы. Пусть, далее, и - точка, в которой ; Она существует по лемме 5. Тогда ибо иначе, согласно лемме 6, нашлась бы такая точка что невозможно.

СПИСОК ЛИТЕРАТУРЫ

Д.К.Фадеев Лекции по алгебре. - СПб.: Изд-во "Лань", 2007. - 416с.

Л.Д.Кудрявцев Курс математического анализа. - М.: Изд-во "Высш. Школа", 1981г. - 687с.

А.Г.Курош Курс высшей алгебры. - М.: Изд-во "Наука", 1971 г. - 431с.