1. Парні й непарні вектор-функції
За аналогією з функціями одної змінної, вектор-функцію , будемо називати парною (непарної), якщо для всіх , є парною (непарної) функцією, тобто область визначення симетрична щодо нуля й ( ).
Будь-яку функцію із симетричною областю визначення, можна представити як суму парної й непарної функцій. Дійсно, якщо
і є парною функцією, а - непарної.
будемо називати парною частиною функції , - непарної.
Відзначимо наступні властивості парних і непарних функцій.
Властивість 1 Похідна парної (непарної) функції є функція непарна (парна).
Доказ. a) - парна функція.
Т.к. і існують або не існують одночасно, те, і . Таким чином, похідна парної функції є функція непарна.
б) - непарна функція.
Т.к. і існують або не існують одночасно, те, і . Таким чином, похідна непарної функції є функція парна.
Властивість 2 Якщо - непарна функція, те .
Доказ. Оскільки - непарна функція, те
Підставивши замість одержуємо
Звідки треба
- Введення
- 1. Парні й непарні вектор-функції
- 2. Основні відомості з теорії функцій, що відбивають
- 3. Системи парна-непара
- 4. Побудова прикладів систем, парна частина загального рішення яких постійна
- 5. Прості й найпростіші системи
- 6. Побудова множини систем, парна частина загального рішення яких постійна
- 6.1 Системи, що мають постійну парну частину
- 6.2 Побудова систем із заданою парною частиною
- Висновок
- 14.3.Усталена помилка при дії з постійною швидкістю зміни
- Тема: «Согласные парные и непарные»
- 28.Система вивчення дієслова
- Вивчення займенника
- 16. Система вивчення дієслова.
- Ознайомлення з теоретичною частиною роботи
- 6.1.2. Принципи процесу оцінювання, запропоновані Кадушин (1985):
- Система вивчення займенника
- Вправи на вивчення займенника