logo
Види розподілу ймовірностей й оцінка його параметрів

Вступ

Предмет теорії ймовірностей. Події, що спостерігаються нами, (явища) можна підрозділити на наступні три види: достовірні, неможливі і випадкові.

Достовірним називають подія, що обовязково відбудеться, якщо буде здійснена визначена сукупність умов S.

Наприклад, якщо в судині міститься вода при нормальному атмосферному тиску і температурі 20?, то подія "вода в судині знаходиться в рідкому стані" є достовірне. У цьому прикладі задані атмосферний тиск і температура води складають сукупність умов S.

Неможливим називають подія, що свідомо не відбудеться, якщо буде здійснена сукупність умов S.

Наприклад, подія "вода в судині знаходиться у твердому стані свідомо не відбудеться, якщо буде здійснена сукупність умов попереднього приклада.

Випадковим називають подію, що при здійсненні сукупності умов S може або відбутися, або не відбутися.

Наприклад, якщо кинута монета, то вона може упасти так, що зверху буде або герб, або напис. Тому подія "при киданні монети випав герб" - випадкове.

Кожна випадкова подія, зокрема - випадання герба, є наслідок дії дуже багатьох випадкових причин (у нашому прикладі: сила, з яким кинута монета, форма монети і багато хто інші). Неможливо врахувати вплив на результат усіх цих причин, оскільки число їхній дуже велике і закони їхньої дії невідомі. Тому теорія ймовірностей не ставить перед собою задачу пророчити, відбудеться одинична подія чи ні, - вона просто не в силах це зробити.

По-іншому обстоїть справа, якщо розглядаються випадкові події, щ о можуть багаторазово спостерігатися при здійсненні тих самих умов S, тобто якщо мова йде про масові однорідні випадкові події. Виявляється, що досить велике число однорідних випадкових подій, незалежно від їхньої конкретної природи, підкоряється визначеним закономірностям, а саме - вероятнісним закономірностям. Установленням цих закономірностей і займається теорія ймовірностей

Коротка історична довідка. Перші роботи, у яких зароджувалися основні поняття теорії ймовірностей, являли собою спроби створення теорії азартних ігор (Кардано, Гюйгенс, Паскаль, Ферма й ін. у XVI-XVII ст.).

Наступний етап розвитку теорії ймовірностей звязаний з імям Якова Бернуллі (1654-1705). Доведена ним теорема, що одержала згод ом назву "Закону великих чисел", була першим теоретичним обґрунтуванням накопичених раніше фактів.

Подальшими успіхами теорія ймовірностей зобовязана Муавру, Лапласові, Гауссу, Пуассонові та ін.

Новий, найбільш плідний, період звязаний з іменами П.Л. Чебишева (1821-1894) і його учнів А.А. Маркова (1856-1922) і А.М. Ляпунова (1857-1918). У цей період теорія ймовірностей стає стрункою математичною наукою, її наступний розвиток зобовязаний, у першу чергу, російським і радянським математикам (С.Н. Бернштейн, В.І. Романовский, А.Н. Колмогоров, А.Я. Хінчин, Б.В. Гнеденко, Н.В. Смирнов і ін.). В даний час ведуча роль у створенні нових галузей теорії ймовірностей також належить радянським математикам.

??

Yandex.RTB R-A-252273-3