15. Теорема о пяти красках, гипотеза четырех красок, «жадный» алгоритм.
Определение. Графом G называется пара (V, E), где – непустое множество вершин графа, а– множество ребер графа, причем каждое ребро – это неупорядоченная пара различных вершин.
Определение. Говорят, что вершины графа G правильно раскрашены с помощью цветов {c1, c2,…, cr}, если каждой вершине поставлен в соответствие некоторый цвет, причем любым двум смежным вершинам соответствуют разные цвета.
Теорема о пяти красках. Для правильной раскраски вершин любого планарного графа достаточно пяти цветов.
Гипотеза четырех красок.Теорема о пяти красках была доказана в 1890 г. Но ещё раньше, в 1879 г., было высказано предположение о том, что для правильной раскраски вершин планарного графа достаточно четырех красок (так называемая «гипотеза четырех красок»). Долгое время оно так и оставалось гипотезой, и лишь в 1976 г., было получено его доказательство. В настоящее время не все математики считают это доказательство строгим, поскольку оно содержит перебор большого количества графов, который был осуществлен авторами доказательства с помощью компьютера. Снизить количество цветов в «гипотезе четырех красок» до трех цветов нельзя, так как существуют планарные графы, напримерК4, для правильной раскраски вершин которых уже недостаточно трёх цветов.
«Жадный» алгоритм.Все известные точные алгоритмы поиска минимального числа красок, достаточного для правильной раскраски его вершин, являются переборными, поэтому их сложность быстро возрастает одновременно с ростом числа вершин в графе. Однако есть «жадные» алгоритмы, которые достаточно эффективны, но иногда «завышают» ответ. Пример «жадного» алгоритма:
Нумеруем вершины графа числами 1, 2, 3… n.
В цикле просматриваем вершины в порядке возрастания их номеров, начиная с первой. Если очередная вершина не покрашена, то красим ее в текущий цвет. Если после этого остались непокрашенные вершины, то берем новый цвет и снова проходим по вершинам, крася их.
- 1. Основные понятия теории графов, удаленность вершины, центр, радиус и диаметр графа.
- 2. Способы задания графов, свойства матриц смежности и инциденций, теорема о рукопожатиях.
- 3. Основные операции над графами, неравенства для числа вершин, ребер и компонент связности графа.
- 4. Типы графов, дополнительные графы, двудольные графы, критерий двудольности.
- 5. Обходы графов: эйлеровы цепи и циклы, необходимые и достаточные условия их существования, алгоритм Флери.
- 6. Обходы графов: гамильтоновы цепи и циклы, достаточные условия их существования.
- 7. Деревья, их свойства, кодирование деревьев, остовные деревья.
- 8. Экстремальные задачи теории графов: минимальное остовное дерево, алгоритмы Прима и Краскала.
- 9. Экстремальные задачи теории графов: задача коммивояжера, «жадный» алгоритм
- 10. Экстремальные задачи теории графов: задача о кратчайшем пути, алгоритм Дейкстры.
- 11. Изоморфизм и гомеоморфизм графов, методы доказательства изоморфности и неизоморфности графов.
- 12. Плоские укладки графов, планарные графы, критерий Понтрягина-Куратовского.
- 13. Необходимые условия планарности, формула Эйлера для планарных графов.
- 14. Правильные вершинные раскраски графов, хроматическое число, неравенства для хроматического числа.
- 15. Теорема о пяти красках, гипотеза четырех красок, «жадный» алгоритм.
- 16. Хроматический многочлен, его нахождение и свойства.
- 17. Задача о поиске выхода из лабиринта, реберная раскраска графа.
- 18. Ориентированные графы, источники и стоки, топологическая сортировка, алгоритм Демукрона.
- 19. Составление расписания выполнения комплекса работ в кратчайшие сроки методами теории графов.
- 20. Элементарные булевы функции и способы их задания (табличный, векторный, формульный, графический, карта Карно).
- 21. Существенные и фиктивные переменные булевых функций, основные тождества, эквивалентные преобразования формул.
- 22. Линейные и нелинейные полиномы Жегалкина, разложение булевых функций в полином Жегалкина методом неопределенных коэффициентов.
- 23. Линейные и нелинейные полиномы Жегалкина, разложение булевых функций в полином Жегалкина методом эквивалентных преобразований.
- 24. Разложение булевых функций в сднф и скнф.
- 25. Минимизация днф и кнф методом эквивалентных преобразований.
- 26. Минимизация днф и кнф с помощью карт Карно.
- 27. Замкнутые классы булевых функций т0, т1, l, лемма о нелинейной функции.
- 28. Замкнутые классы булевых функций s и м, леммы о несамодвойственной и немонотонной функции.
- 29. Полная система функций, теорема о двух системах булевых функций.
- 30. Теорема Поста о полноте системы булевых функций, алгоритм проверки системы на полноту, базис.
- 31. Схемы из функциональных элементов, правила построения и функционирования, метод синтеза сфэ, основанный на сднф и скнф.
- 32. Метод синтеза сфэ, основанный на компактной реализации всех конъюнкций с помощью универсального многополюсника, сложность получаемых схем.
- 33. Основные комбинаторные операции, сочетания и размещения (с возвращением и без возвращения элементов).
- 34. Комбинаторные принципы сложения, умножения, дополнения, включения-исключения.
- 35. Биномиальные коэффициенты, их свойства, бином Ньютона.
- 36. Треугольник Паскаля, полиномиальная формула.
- 37. Алфавитное кодирование: необходимое и достаточные условия однозначности декодирования.
- 38. Алфавитное кодирование: теорема Маркова, алгоритм Маркова.
- 39. Коды с минимальной избыточностью (коды Хаффмана), метод построения.
- 40. Линейные коды, порождающая матрица, двойственный код.
- 41. Самокорректирующиеся коды (коды Хэмминга), метод построения.
- 42. Определение, схема и функционирование абстрактного автомата, способы задания автоматов.
- 43. Типы конечных автоматов, автоматы Мили и Мура, автоматы-генераторы.
- 44. Слова и языки, операции над ними, их свойства.
- 45. Регулярные выражения и регулярные языки, теорема Клини.
- 46. Задача анализа автоматов-распознавателей.
- 47. Задача синтеза автоматов-распознавателей.
- 48. Эквивалентные состояния автомата-распознавателя, эквивалентные автоматы-распознаватели, минимизация автоматов-распознавателей, алгоритм Мили.
- 49. Эквивалентные состояния автомата-преобразователя, эквивалентные автоматы- преобразователи, минимизация автоматов- преобразователей, алгоритм Мили.
- 50. Детерминированные и недетерминированные функции, примеры, способы задания.
- 51. Ограниченно-детерминированные (автоматные) функции, способы их задания.
- 52. Логические автоматы, способы их задания, синтез двоичного сумматора.
- 53. Операции над логическими автоматами: суперпозиция и введение обратной связи.