§5 Нормальные формы для формул алгебры высказываний.
Конъюнктивным (дизъюнктивным) одночленом от переменных X1, X2, …, Xn называются конъюнкция (дизъюнкция) этих переменных или их отрицаний. Например, X1X2X3, X1X2, X1 – конъюнктивные одночлены; X1X3, X1X2, X3 – дизъюнктивные одночлены.
Дизъюнктивной (конъюнктивной) нормальной формой называется произвольная дизъюнкция (конъюнкция) конъюнктивных (дизъюнктивных) одночленов. Например, (Х1X2)(Х1Х2) – дизъюнктивная нормальная форма; (Х1Х2Х3)(Х1Х2)Х3 – конъюнктивная нормальная форма.
Сокращенная запись: ДН – форма и КН – форма соответственно.
Одночлен от некоторых переменных называется совершенным, если каждая из этих переменных входит в него ровно один раз со знаком отрицания или без знака отрицания.
Нормальная форма от некоторых переменных называется совершенной, если каждый входящий в неё одночлен является совершенным одночленом от тех же самых переменных.
Сокращённая запись: СДН – форма (или СДНФ) – совершенная дизъюнктивная нормальная форма, СКН – форма (или СКНФ) – совершенная конъюнктивная нормальная форма.
Например, (Х1Х2)(Х1Х2)(Х1Х2) – совершенная конъюнктивная нормальная форма от двух переменных X1 и X2;
(Х1Х2Х3)(Х1Х2Х3) – совершенная дизъюнктивная нормальная форма от трёх переменных X1, X2, X3.
Теорема 1: Всякая формула алгебры высказываний, отличная от тождественно ложной, имеет единственную совершенную дизъюнктивную нормальную форму. Тождественно ложная формула СДНФ не имеет.
Теорема 2: Всякая формула алгебры высказываний, отличная от тождественно истинной, имеет единственную совершенную конъюнктивную нормальную форму. Тождественно истинная формула СКНФ не имеет.
- Хакасский государственный университет им. Н.Ф.Катанова математическая логика
- Содержание
- Литература.
- Введение.
- Алгебра высказываний.
- §1. Высказывания и операции над ними.
- Упражнения.
- §2. Формулы алгебры высказываний. Виды формул.
- Упражнения.
- §3 Логическое следствие
- Основные методы установления верности логического следствия:
- Упражнения
- §4 Равносильность формул алгебры высказываний.
- Упражнения
- §5 Нормальные формы для формул алгебры высказываний.
- Отыскание нормальных форм Упражнения.
- Применение нормальных форм.
- Нахождение следствий из посылок.
- Нахождение посылок для данных следствий.
- § 6. Булевы функции (функции алгебры логики).
- Классы булевых функций.
- Упражнения.
- §7. Алгебра логики и релейно-контактные схемы.
- Анализ релейно-контактных схем. Упражнения.
- Синтез релейно-контактных схем.
- §8. Особые методы минимизации.
- Графический метод.
- М атрица Карно.
- Метод неопределенных коэффициентов.
- М етод минимизирующих карт.
- М етод Квайна.
- Упражнения.
- Примерные варианты контрольных работ.