logo
atch_exam_1-8

1) Алгебраическая форма комплексного числа. Действия над комплексными числами в алгебраической форме

А лгебраическая форма

Запись комплексного числа z в виде x + iy, , называется алгебраической формой комплексного числа.

Сумма и произведение комплексных чисел могут быть вычислены непосредственным суммированием и перемножением таких выражений, как обычно раскрывая скобки и приводя подобные, чтобы представить результат тоже в стандартной форме (при этом надо учесть, что i2 = − 1):

(a + ib) + (c + id) = (a + c) + i(b + d);

Действия над комплексными числами

Сравнение

a + bi = c + di означает, что a = c и b = d (два комплексных числа равны между собой тогда и только тогда, когда равны их действительные и мнимые части).

Сложение

(a + bi) + (c + di) = (a + c) + (b + d)i.

Вычитание

(a + bi) − (c + di) = (a − c) + (b − d)i.

Умножение

(a+bi)*(c+di)=

=ac+bci+adi-bd=(ac-bd)+(bc+ad)i 

Деление