atch_exam_1-8
Доказательство
НОД(0,r) = r для любого ненулевого r (т.к. 0 делится на любое целое число, кроме нуля).
Проще сформулировать алгоритм Евклида так: если даны натуральные числа a и b и, пока получается положительное число, по очереди вычитать из большего меньшее, то в результате получится НОД.
Содержание
- 1) Алгебраическая форма комплексного числа. Действия над комплексными числами в алгебраической форме
- 2) Комплексное число как пара вещественных чисел. Основные свойства пар. Обоснование свойств комплексных чисел.
- 6) Схема Горнера. Разложение по степеням х-с. Краткая схема Горнера.
- 7)Теорема Безу
- 3) Комплексная плоскость. Модуль и аргумент. Сопряженное к комплексному числу. Тригонометрическая форма комплексного числа. Геометрическая модель
- Сопряжённые числа
- 8) Нод многочленов. Алгоритм Евклида.
- Доказательство