2) Комплексное число как пара вещественных чисел. Основные свойства пар. Обоснование свойств комплексных чисел.
К омплексное число z можно определить как упорядоченную пару вещественных чисел (x,y). Введём операции сложения и умножения таких пар следующим образом:
В ещественные числа являются в этой модели подмножеством множества комплексных чисел и представлены парами вида (x,0) , причём операции с такими парами согласованы с обычными сложением и умножением ввенных чисел. Ноль представляется парой
е диница –
а мнимая единица –
На множестве комплексных чисел ноль и единица обладают теми же свойствами, что и на множестве вещественных, а квадрат мнимой единицы, как легко проверить, равен , то есть − 1.
Несложно показать, что определённые выше операции имеют те же свойства, что и аналогичные операции с вещественными числами. Исключением являются только свойства, связанные сотношением порядка (больше-меньше), потому что расширить порядок вещественных чисел, включив в него все комплексные числа так, чтобы операции по-прежнему были согласованы с порядком, невозможно
- 1) Алгебраическая форма комплексного числа. Действия над комплексными числами в алгебраической форме
- 2) Комплексное число как пара вещественных чисел. Основные свойства пар. Обоснование свойств комплексных чисел.
- 6) Схема Горнера. Разложение по степеням х-с. Краткая схема Горнера.
- 7)Теорема Безу
- 3) Комплексная плоскость. Модуль и аргумент. Сопряженное к комплексному числу. Тригонометрическая форма комплексного числа. Геометрическая модель
- Сопряжённые числа
- 8) Нод многочленов. Алгоритм Евклида.
- Доказательство