1. Параллельные прямые линии.
Параллельными называются две прямые, которые лежат в одной плоскости и не имеют общих точек.
Проекции параллельных прямых на любую плоскость (не перпендикулярную данным прямым) - параллельны.
Это свойство параллельного проецирования остается справедливым и для ортогональных проекций, то есть если AB//CD то A1B1//C1D1; A2B2//C2D2; A3B3//C3D3 (рис.23). В общем случае справедливо и обратное утверждение.
Рисунок 23. Параллельные прямые
Особый случай представляют собой прямые, параллельные одной из плоскостей проекций. Например, фронтальные и горизонтальные проекции профильных прямых параллельны, но для оценки их взаимного положения необходимо сделать проекцию на профильную плоскость проекций (рис. 24). В рассмотренном случае проекции отрезков на плоскость П3 пересекаются, следовательно, они не параллельны.
Решение этого вопроса можно получить сравнением двух соотношений если:
А2В2/ А1В1= С2Д2/ С1 Д1Þ АВ//СД
А2В2/ А1В1¹ С2Д2/ С1Д1Þ АВ#СД
Рисунок 24. Прямые параллельные профильной плоскости проекций
2. Пересекающиеся прямые.
Пересекающимися называются две прямые лежащие в одной плоскости и имеющие одну общую точку.
Если прямые пересекаются, то точки пересечения их одноименных проекций находится на одной линии связи (рис. 25).
Рис. 25. Пересекающиеся прямые
В общем случае справедливо и обратное утверждение, но есть два частных случая:
1. Если одна из прямых параллельна какой-либо из плоскостей проекций, например профильной плоскости проекций (рис. 26), по двум проекциям невозможно судить об их взаимном расположении. Так горизонтальная и фронтальная проекции отрезков АВ и СД пересекаются, причем точка пересечения проекций лежит на одной линии связи, профильные проекции этих отрезков тоже пересекаются, однако точка их пересечения не лежит на одной линии связи с точками пересечения горизонтальной и фронтальной проекций отрезков, следовательно, не пересекаются и сами отрезки.
Рис. 26.Одна из прямых параллельна профильной плоскости проекций
2. Пересекающие прямые расположены в общей для них проекционной плоскости, например перпендикулярной фронтальной плоскости проекций (рис. 27). О взаимном расположении прямых, лежащих в этой плоскости, можно судить по одной проекции, например, на горизонтальную плоскость проекций (А1В1∩С1D1ÞАВ∩СD)
Рис. 27. Пересекающиеся прямые расположены в фронтально проецирующей плоскости
- Лекция 1
- Точка в ортогональной системе двух плоскостей проекций.
- Точка Точка в ортогональной системе трех плоскостей проекций
- Взаимное расположение точек
- Прямая линия Способы графического задания прямой линии
- Положение прямой линии относительно плоскостей проекций
- Следы прямой линии.
- Взаимное расположение точки и прямой
- Деление отрезка прямой линии в данном соотношении.
- Определение длины отрезка прямой линии и углов наклона прямой к плоскостям проекций
- Взаимное расположение двух прямых
- 1. Параллельные прямые линии.
- 3. Скрещивающиеся прямые
- Проекции плоских углов
- Типы задач начертательной геометрии
- Лекция 2
- Методы преобразования ортогональных проекций
- Метод плоскопараллельного перемещения
- Метод вращения вокруг оси перпендикулярной плоскости проекций
- Метод вращения вокруг оси параллельной плоскости проекций
- Метод замены плоскостей проекций
- Плоскость
- Различное положение плоскости относительно плоскостей проекций
- Следы плоскости
- Взаимное расположение прямой и плоскости
- Прямая линия, принадлежащая плоскости
- Главные линии в плоскости
- Прямая линия, параллельная плоскости
- Прямая линия, пересекающая плоскость
- Прямая линия перпендикулярная плоскости.
- Взаимное расположение точки и плоскости
- Взаимное расположение двух плоскостей