logo
ФОМ-Лекции

1.1. Зонная структура энергетического спектра носителей заряда

Стоящая перед нами задача сводится к рассмотрению свойств и поведения заряженных частиц в кристаллическом твердом теле.

Из курсов атомной физики и квантовой механики известно пове­дение электронов в отдельно взятом изолированном атоме. В этом случае электроны могут обладать не любыми значениями энергии Е, а лишь некоторыми. Энергетический спектр электронов приобретает дискретный характер, как это показано на рис. 1.1, в. Переходы с од­ного энергетического уровня на другой связаны с поглощением или выделением энергии.

б) в) г)

Рис. 1.1. Схема образования энергетических зон в кри­сталлах:

а — расположение атомов в одномерном кристалле; б — распре­деление внутрикристаллического потенциального поля; в — рас­положение энергетических уровней в изолированном атоме; г — рас­положение энергетических зон

Возникает вопрос, как изменятся энергетические электронные уровни в атомах, если приближать атомы друг к другу, т. е. конден­сировать их в твердую фазу. Упрощенная картина такого одномер­ного кристалла приведена на рис. 1.1, а.

Качественный ответ на этот вопрос получить нетрудно. Рассмотрим какие силы действуют в отдельном атоме, и какие — в кристалле. В изолированном атоме существуют сила притяжения ядром атома всех своих электронов и сила отталкивания между электронами. В кристалле из-за близкого расстояния между атомами возникают новые силы. Это — силы взаимодействия между ядрами, между элек­тронами, принадлежащими разным атомам, и между всеми ядрами и всеми электронами. Под влиянием этих дополнительных сил энергетические уровни электронов в каждом из атомов кристалла каким-то образом должны измениться. Одни уровни понизятся, другие повысятся на шкале энергий. В этом состоит первое следствие сближения атомов. Второе следствие связано с тем, что электронные оболочки атомов, в особенности, внешние могут не только соприкасаться друг с другом, но спо­собны даже перекрыться. В результате этого электрон с одного уровня в каком-либо из атомов может перейти на уровень в соседнем атоме без затраты энергии и, таким образом, свободно перемещаться от одного атома к другому. В связи с этим нельзя утверждать, что данный электрон принадлежит какому-нибудь одному определенному атому, наоборот, электрон в такой ситуации принадлежит всем атомам кри­сталлической решетки одновременно. Иными словами, происходит обобществление электронов. Разумеется, что полное обобществление происходит лишь с теми электронами, которые находятся на внешних электронных оболочках. Чем ближе электронная оболочка к ядру, тем сильнее ядро удерживает электрон на этом уровне и препятствует перемещению электронов от одного атома к другому.

Совокупность обоих следствий сближения атомов приводит к по­явлению на энергетической шкале вместо отдельных уровней целых энергетических зон (рис. 1.1, г), т. е. областей таких значений энер­гий, которыми может обладать электрон, находясь в пределах твер­дого тела. Ширина зоны должна зависеть от степени связи электрона с яд­ром. Чем больше эта связь, тем меньше расщепление уровня, т. е. тем уже зона. В изолированном атоме имеются запрещенные значения энергии, которыми не может обладать электрон. Естественно ожи­дать, что нечто аналогичное будет и в твердом теле. Между зонами (теперь уже не уровнями) могут быть запрещенные зоны. Характерно, что если в отдельном атоме расстояния между уровнями будут не­велики, то в кристалле запрещенный участок может исчезнуть за счет перекрытия образующихся энергетических зон.

Таким образом, энергетический спектр электронов в кристалле имеет зонную структуру.. Количественное решение задачи о спектре электронов в кристалле с помощью уравнения Шредингера так же приводит к выводу , что энергетический спектр электронов в кристалле имеет зонную структуру. Интуитивно можно представить, что раз­личие в свойствах разных кристаллических веществ однозначно свя­зано с разной структурой энергетического спектра электронов (раз­ная ширина разрешенных и запрещенных зон)

Квантовая механика для объяснения ряда свойств материи рассматривает эле­ментарные частицы, в том числе и электрон одновременно и как частицу, и как некую волну. Т. е. электрон можно одновременно характеризовать величинами энергии Е и импульса р, а также длиной волны λ, частотой ν и волновым вектором k = р/h. При этом, Е= и p = h/λ. Тогда движение свободных электронов может быть описана плоской волной, именуемой волной де-Бройля, с постоянной амплитудой.