Глава 4. Решения волновых уравнений
Ниже рассматривается ряд вопросов, связанных с математическим аппаратом, применяемым в гл. 4 книги [1]. До этого подробно обсуждались только свободные поля - волны без источников. Теория излучения и дифракции - это анализ полей вынужденных и, соответственно, условий возбуждения волн. Поэтому в дополнение к тому, что уже известно из п. 13 о решениях однородных уравнений - волнового уравнения (7.11) и уравнения Гельмгольца (7.6), теперь надо будет познакомиться с интегрированием уравнений неоднородных - уравнения Гельмгольца (7.10) и уравнения Даламбера (7.12). Собирательно будем называть все эти уравнения волновыми.
Другая тема данной главы - получение решений однородного уравнения Гельмгольца методом разделения переменных в декартовых, цилиндрических, а также сферических координатах. При подготовке этого материала сообщаются сведения о некоторых специальных функциях, главным образом, о функциях цилиндрических. Указанные функции используются в курсе электродинамики при изучении распространения электромагнитных волн в различных направляющих системах.
Yandex.RTB R-A-252273-3- Введение
- Глава 1. Элементы векторного анализа
- 1. Векторы и действия над ними
- 2. Математическое понятие поля. Градиент
- 3. Дивергенция. Теорема Остроградского-Гаусса
- 4. Ротор. Теорема Стокса
- 5. Некоторые соотношения векторного анализа
- 6. Операции в криволинейных координатах
- В цилиндрических координатах
- В сферических координатах
- 7. О дифференциальных уравнениях с частными производными
- Глава 2. Уравнения лапласа и пуассона
- 8. Дельта-функция Дирака
- 9. Интегрирование уравнения Пуассона
- 10. Граничные задачи для уравнения Лапласа
- 11. Метод разделения переменных
- Глава 3. Гармонические колебания и волны
- 12. Гармонические колебания и метод комплексных амплитуд
- 13. Волновые процессы и их математическое описание
- 14. Вращение декартовой системы координат
- Глава 4. Решения волновых уравнений
- 15. Интегрирование неоднородного уравнения Гельмгольца и уравнения Даламбера
- 16. Уравнение Бесселя и цилиндрические функции
- 17. Решение однородного уравнения Гельмгольца методом разделения переменных
- Глава 5. Краевые задачи электродинамики
- 18. Граничные задачи для уравнения Гельмгольца.Собственные функции и собственные значения
- 19. Ортогональные системы функций и ряды Фурье
- 20. Сведения из алгебры
- 21. Проекционные методы
- Оглавление