2.5 Задача Дирихле. Бифуркация Хопфа.
Аргументом в задаче Дирихле является пространственная переменная r. Цель состоит в нахождении пространственного распределения концентраций вещества xi(r). Известно, что на границах реактора (r.=0, r.= L) концентрации xi(r) или их производные xi/r зафиксированы и не зависят от времени.
Решение:
x(r,t) = x0etSin(nr)
y(r,t) = y0etSin(nr)
Эти решения соответствуют дифференциальным уравнениям
dx(r,t)/dt = a11x + a12y + Dxk2x
dy(r,t)/dt = a21x + a22y + Dyk2y
В этих уравнениях нет пространственных координат (r). По форме они подобны уравнениям точечным уравнениям динамики. Их устойчивость можно исследовать обычным образом.
В теории динамических систем, бифуркация Андронова — Хопфа — локальная бифуркация векторного поля на плоскости, в ходе которой особая точка-фокус теряет устойчивость при переходе пары её комплексно-сопряжённых собственных значений через мнимую ось. При этом либо из особой точки рождается небольшой устойчивый предельный цикл (мягкая потеря устойчивости), либо, наоборот, небольшой неустойчивый предельный цикл в момент бифуркации схлопывается в эту точку, и её бассейн отталкивания после бифуркации имеет отделённый от нуля размер (жёсткая потеря устойчивости).
Для того, чтобы эта бифуркация имела место, достаточно в дополнение к переходу собственных значений через мнимую ось наложить на систему некоторые условия типичности.
Бифуркация Андронова — Хопфа и седлоузловая бифуркация — единственные локальные бифуркации векторных полей на плоскости, возникающие в типичных однопараметрических семействах.
- 4.5 Антиинтуитивное поведение.
- 9.5 Рамки экспериментов с моделью.
- 3. Уравнение Ресслера
- 3.1 Получение характеристического уравнения третьего порядка для уравнения, заданного в отклонениях от точки равновесия, из якобиана.
- 3.3 Условие для определения вида собственных значений характеристического уравнения третьего порядка.
- 2. Гамильтонова форма уравнений динамических систем
- 2.1 Декартова система координат.
- 2.2 Гамильтонова система координат.
- 3.1 Условие резонанса.
- 4. Консервативные динамические системы
- 4.1 Огромный класс объектов классической динамики – консервативные системы.
- 4.2 Инерциальная система отсчета. Возмущающих сил нет. Три закона сохранения. Обратимость времени.
- 4.4 Условие Лиувилля для консервативных систем.
- 1.1 Детальное качественно исследование этого уравнения: установившиеся режимы и асимптотическое поведение.
- 1.2 Аттракторы. Число и типы аттракторов. Области притяжения аттракторов.
- 2.1 Постановка задачи.
- 2.2 Исследование модели в линейном приближении.
- 2.3 Влияние параметра.
- 2.4 Рождение предельного цикла. Задача Коши.
- 2.5 Задача Дирихле. Бифуркация Хопфа.
- 2.6 Изменение концентраций по длине реактора.
- 1.1 Принадлежащие аттрактору траектории устойчивы. 2 Предопределенность поведения на этих траекториях при начальных условиях, заданных с погрешностю.
- 1.6 Достоверный прогноз разбегания близких вначале траекторий во времени для нелинейных систем.
- 2. Хаотические непериодические режимы динамических систем. Странные аттракторы
- 2.7 Ляпуновкие показатели - наиболее эффективно и просто вычисляемые характеристики динамического хаоса. Объясните.
- 3.Фракталы
- 3.1 Объекты с дробной размерностю.
- 3.2 Какова размерность странных аттракторов? – дробная
- 3.3 «Аттрактор определяет режимы, «чувствительные к начальным условиям»». Объясните.
- 1. Теория катастроф
- 1.1 Потенциальные функции катастроф. Условия критического состояния.