logo
Вычмат

19)Алгебраические и трансц. Уравнения

АЛГЕБРАИЧЕСКОЕ уравнение, уравнение, которое можно преобразовать так, что в левой части будет многочлен от неизвестных, а в правой - нуль. Степень многочлена называется степенью уравнения. Простейшие

 алгебраические уравнения: линейное уравнение - уравнение 1-й степени с одним неизвестным ax+b=0, имеющее один действительный корень; квадратное уравнение -уравнение 2-й степени ax2+bx+c=0, которое в зависимости от значения коэффициентов может иметь либо два различных, либо два совпадающих действительных корня, либо не иметь действительных корней. Вообще, алгебраическое уравнение степени n не может иметь более n корней.

Трансцендентное уравнение — уравнение не являющееся алгебраическим. Обычно это уравнения, содержащие показательные, логарифмические, тригонометрические, обратные тригонометрические функции, например:

cosx = x

logx = x − 5

2x = logx + x5 + 40

Более строгое определение члена таково:

Трансцендентное уравнение — это уравнение вида f(x) = g(x), где функции f и g являются аналитическими функциями, и по крайней мере одна из них не является алгебраической.