2. Цикломатическое число Маккейба
Впервые графическое представление программ было предложено Маккейбом. Основной метрикой сложности он предлагает читать цикломатическую сложность графа программы, или, как ее еще называют цикломатическое число Маккейба, характеризующее трудоемкость тестирования программы.
Для вычисления цикломатического числа Маккейба Z(G) применяется формула
Z(G) = e-v+2p (1)
где e – число дуг ориентированного графа G; v – число вершин; 2p – число компонентов связности графа.
Число компонентов связности графа можно рассматривать как количество дуг, которые необходимо добавить для преобразования графа в сильносвязнный. Сильносвязным называется граф, любые две вершины которого взаимно достижимы. Для графов корректных программ, т.е. графов, не имеющих недостижимых от точки входа участков и «висячих» точек входа и выхода, сильносвязанный граф получается путём замыкания дугой вершины, обозначающей конец программы на вершину, обозначающую точку входа в эту программу. Как правило, р = 1
По сути Z(G) определяет число линейно независимых контуров в сильносвязном графе. Иначе говоря, цикломатическое число Маккейба показывает требуемое количество проходов для покрытия всех контуров сильносвязного графа или количество тестовых прогонов программы, необходимых для исчерпывающего тестирования по критерию "работает каждая ветвь"
Для программы, граф которой
изображен на рисунке 1,
цикломатическое число при e = 10, v = 8, p = 1,
определится как Z(G) = 10-8+2=4. Таким образом, имеется сильносвязный граф с четырьмя линейно независимыми контурами: a-b-c-g-e-h-a; a-b-c--e-h-a; a-b-d-f-e-h-a; a-b-d-e-h-a.
Ц Рис 1 Пример управляющего графа программы
Например, имеется два оператора условия :
IF X>0
THEN X=A;
ELSE;
и
IF (X>0 & FLAG = '1'B) !
(X=0 & FLAG = '0'B)
THEN X=A;
ELSE;
Оба оператора предполагают единственное ветвление и могут быть представлены одним и тем же графом (рис. 2). Очевидно, цикломатическое число будет для обоих операторов одинаковым, не отражающим сложности предикатов, что весьма существенно при оценке программ.
И сходя из этого Г.Майерс предложил расширение этой метрики. Суть подхода Г.Майерса состоит в представлении метрики сложности программ в виде интервала [Z(G), Z(G)+h]. Для простого предиката h ≠ 0, а для n-местных предикатов h=n-1. Таким образом, первому оператору соответствует интервал [2, 2], а второму [2, 6].
Такая метрика позволяет различать программы, представленные одинаковыми графами.
Рис. 2 Фрагмент графа программы
- Предисловие
- Введение
- Техника безопасности при выполнении лабораторных работ
- 1. Общие требования безопасности
- 2. Требования безопасности перед началом работы
- 3. Требования безопасности во время работы
- 1.1.2. Идентификация формы распределения результатов измерений. Критерии согласия
- Критерий пирсона
- Критерий колмогорова
- Составной критерий
- 1.2. Порядок выполнения работы
- Обработка результатов измерений
- 1. 3. Содержание отчета
- 1. 4. Контрольные вопросы
- 2.1.2. Точечные оценки законов распределения
- 2.1.3. Доверительная вероятность и доверительный интервал
- 2.1.4. Грубые погрешности и методы из исключения
- 2.1.4.1. Критерии исключения грубых погрешностей
- 2.1.5. Суммирование погрешностей
- 2.1.6. Порядок обработки результатов прямых многократных измерений
- 1.2. Порядок выполнения работы
- Обработка результатов измерений
- 2. 3. Содержание отчета
- 2.4. Контрольные вопросы
- Учебно-методическое обеспечение
- Лабораторная работа № 3 контроль качества технологического процесса с помощью карт контроля по количественному признаку
- 3.1. Теоретическая часть
- 3.1.1. Общие сведения о контрольных картах
- 3.1.2. Построение контрольной карты
- 3.1.3. Карты контроля по количественному признаку
- 3. 2. Порядок выполнения работы
- Обработка результатов измерений
- 3. 3. Содержание отчета
- 4. Контрольные вопросы
- 4. 2. Порядок выполнения работы
- Обработка результатов измерений
- 2.1. Вычисляется величина среднего квадратического отклонения для всей выборки измерений (изделий) по формуле ,
- 3. 3. Содержание отчета
- 4. Контрольные вопросы
- Литература
- 2. Метрическая теория программ. Разновидности метрик. Шкалы
- 3. Метрики сложности программ
- 2. Цикломатическое число Маккейба
- 3. Метрика Джилба оценки сложности
- 4. Метрика «граничных значений» оценки сложности
- 5. Описание алгоритма
- Подграфы программы
- Скорректированная сложность вершин графа программы
- Задание
- Контрольные вопросы
- 2. "Спен"
- 3. Метрика Чепина.
- 2. Метрики Холседа для оценки стилистики и понятности программ
- Уровень качества программирования
- Задание
- Контрольные вопросы
- Литература
- Лабораторная работа № 9 Метрики использования языков программирования и технологических средств
- Оценки языка программирования
- 2. Уровень автоматизации программирования
- 2.2. Обработка результатов измерений
- 2. 3. Содержание отчета