logo search
Исследование математической модели прицепа, движущегося по неровной дороге

2.2 Математические модели и их свойства

При проектировании различных технических объектов используют множество видов математических моделей В общем случае уравнения математической модели связывают физические величины, которые характеризуют состояние объекта. Такими величинами являются: скорости и силы - в механических системах; расходы и давления - в гидравлических и пневматических системах; температуры и тепловые потоки - в тепловых системах и т.п.

Параметры, характеризующие состояние технического объекта в процессе его функционирования, называют фазовыми переменными (фазовыми координатами) [13]. Вектор фазовых переменных задает точку в пространстве, называемом фазовым пространством. Фазовое пространство, в отличие от геометрического, многомерное. Его размерность определяется количеством используемых фазовых координат.

Математические модели технических объектов,используемые при проектировании, предназначены так же и для анализа процессов функционирования объектов и оценки их выходных параметров. Они должны отображать физические свойства объектов, существенные для решения конкретных задач проектирования. При этом математическая модель должна быть как можно проще, но в то же время обеспечивать адекватное описание анализируемого процесса.

-Аналитическая модель представляет собой явные зависимости искомых переменных от заданных величин (обычно зависимости выходных параметров объекта от внутренних и внешних параметров). Такие модели получают на основе физических законов, либо в результате прямого интегрирования исходных дифференциальных уравнений, используя табличные интегралы. К ним относятся также регрессионные модели, получаемые на основе результатов эксперимента.

-Графическая (схемная) модель представляется в виде графиков, эквивалентных схем, динамических моделей, диаграмм и т. п. Для использования графических моделей должно существовать правило однозначного соответствия условных изображений элементов графической и компонентов инвариантной математических моделей.

-Структурные модели отображают только структуру объектов и используются при решении задач структурного синтеза. Параметрами структурных моделей являются признаки функциональных или конструктивных элементов, из которых состоит технический объект и по которым один вариант структуры объекта отличается от другого. Эти параметры называют морфологическими переменными. Структурные модели имеют форму таблиц, матриц и графов. Наиболее перспективно применение древовидных графов типа дерева. Они позволяют аккумулировать накопленный опыт, используя описания всех существующих аналогов, известных из патентной литературы, и гипотетических объектов.

-Функциональные модели описывают процессы функционирования технических объектов и имеют форму систем уравнений.

-Теоретические модели получают на основе описания физических процессов функционирования объекта, а экспериментальные - на основе изучения поведения объекта во внешней среде, рассматривая его как кибернетический "черный ящик". Эксперименты при этом могут быть физические (на техническом объекте или его физической модели) или вычислительные (на теоретической математической модели).

При построении теоретических моделей используют физический и формальный подходы.

Физический подход сводится к непосредственному применению физических законов для описания объектов. Формальный подход использует общие математические принципы и применяется при построении как теоретических, так и экспериментальных моделей.

Линейные модели содержат только линейные функции фазовых переменных и их производных. Характеристики многих элементов реальных технических объектов нелинейные. Математические модели таких объектов включают нелинейные функции фазовых переменных или их производных и относятся к нелинейным.