logo search
Построение прямоугольной системы координат

ПРЕДМЕТ МАТЕМАТИКИ. ИСТОРИЧЕСКИЕ СВЕДЕНИЯ

Математика представляет собой одну из самых важных функциональных наук. В широком смысле математика - это наука в которой изучаются количественные отношения и пространственные формы действительного мира. Возникновение математики относится к глубокой древности. Первый ее период получил название "элементарной математики". Ее особенности:

1. Неподвижность рассматриваемых объектов;

2. Не использование идеи бесконечности;

3. Отсутствие общих методов.

Бурное развитие производства, техники, естествознания в XYII-XYIII веках потребовало создания математического аппарата, пригодного к изучению переменных величин, находящихся между собой в функциональной зависимости.

Возникла новая, так называемая, высшая математика с ее разделами: аналитическая геометрия, дифференциальное и интегральное исчисление, теория дифференциальных уравнений и другие. В общих чертах математику делят на геометрию и анализ. В аналитической геометрии был дан общий метод решения геометрических задач - метод координат.

Математический анализ занимается переменными величинами и их взаимосвязью.

Основы аналитической геометрии были даны французским математиком Декартом /1596-1650/. Открытие дифференциального и интегрального исчисления принадлежит английскому математику Ньютону /1642 -1727/ и немецкому математику Лейбницу /1642-1716/. Выдающаяся роль в создании классического математического анализа сыграли Эйлер /1707 - 1783/, Лагранж /1736 - 1813/, Гаусс /1777 - 1855/, Коши /1789 - 1857/, Вейерштрасс /1815-1897/ и др.

Расцвет математики наступил тогда, когда без нее не могут обойтись другие науки. К концу XIX века математика приобретает огромное практическое значение. Теперь область знания превращается в зримую науку, если в ней используются математические методы.

Математические методы плодотворно используются во многих областях. На основании теории исчисления бесконечно малых величин Ньютон вывел законы движения небесных тел. На основе дифференциального и интегрального исчисления были сформулированы все физические законы, открытые в XVIII - XIX веках. В 1848 году французский ученый Леверье теоретически предсказал существование планеты Нептун, а затем открыл ее.

Жуковский, профессор московского университета, теоретически предсказал возможность фигур высшего пилотажа и в скором времени первая фигура "мертвая петля" была использована Нестеровым.

Большой вклад в развитие математики внесли русские ученые. Остановимся на некоторых важных результатах, полученных учеными России.

РОЛЬ РУССКИХ УЧЕНЫХ

Великому математику, петербургскому академику Эйлеру, принадлежат фундаментальные результаты почти во всех областях математического знания.

Н.И. Лобачевский / 1792-1856 / совершил настоящую революцию в геометрии, создав новую науку "Геометрию Лобачевского".

М.В. Остроградский / 1801-1861 / вывел важное соотношение в теории кратных интегралов.

Русский ученый П.Л. Чебышев / 1821-1894 / в связи со своими замечательными работами по теории механизмов создал новый раздел математики "Теория наилучшего приближения функции". Он является основателем одной из наиболее сильнейших математических школ в мире - Петербургской математической школы, блестящими представителями которой были А.А. Марков, В.А. Стеклов, А.Н. Крылов и другие.

С.В. Ковалевская / 1850 - 1891 / работала в области дифференциальных уравнений и теоретической механики и получила там первоклассные результаты

В XX веке продолжается бурный процесс математизации других наук. Математические методы с успехом используются не только в механике, физике, астрономии, но и в биологии, экономике, военном деле, медицине, лингвистике и других областях.

Последние десятилетия ознаменовались бурным развитием средств и методов вычислительной математики. Математическое моделирование и прогнозирование позволяет рассчитать такие процессы, которые даже недоступны к постановке опыта (проблема термоядерного управляемого синтеза, физики плазмы, лазеров и другие задачи).

Отметим, что в настоящее время достижения русских математиков находятся на уровне передовой математической мысли.

Остановимся на роли математики в военном деле. В настоящее время математические методы широко применяются во всех общенаучных и инженерных дисциплинах, необходимых при подготовке военного специалиста. Методы математического анализа и теории вероятностей используются в тактике, теории стрельбы и боеприпасов, теории эффективности боевых действий и др.

В военной науке широкое распространение получило математическое моделирование, позволяющее с помощью ЭВМ моделировать и изучать многие технические, экологические процессы, а также разрабатывать и прогнозировать военные операции.

2-oй учебный вопрос