§ 9. Ряды Фурье для комплексных функций
Рассмотрим элементы теории рядов Фурье для комплексных функций, т.е. функций вида , гдеi – мнимая единица, – вещественные функции вещественного аргумента. Обозначим символоммножество комплексных кусочно-непрерывных функций, определенных на промежутке.
Скалярным произведением функций назовем комплексное число
,
где – функция, комплексно сопряженная с функцией.
свойства скалярного произведения комплексных функций следующие:
1.
2. билинейность
, .
Доказать свойства 1 и 2 предлагаем самостоятельно.
Как и ранее, функции f и g будем называть ортогональными, если их скалярное произведение равно нулю.
Определение нормы функции оставим прежним, так что
.
Свойства нормы, претерпевшие изменения при переходе от вещественных функций к комплексным, следующие:
1. теорема косинусов.
или в более общем виде
. (9.1)
2. Обобщенная теорема Пифагора. Если , то
.
Доказать свойства 1 и 2 следует самостоятельно.
3. Неравенство Коши – Буняковского. Если функции и непрерывны, то .
В самом деле, если , тона, и доказываемое неравенство выполняется. Пусть. Числоочевидно, не отрицательно. С другой стороны, по формуле (9.1), гдеи, имеем
.
Таким образом, , а так как, то, что и требовалось доказать.
Пусть теперь система комплексных функций
(9.2)
ортогональна на промежутке . Сопоставим функции ее ряд Фурье
(9.3)
где коэффициенты Фурье
.
Введем обозначения: – частичная сумма ряда Фурье;– произвольная линейная комбинация функцийгде.
Тогда, так же, как для вещественных функций (см. § 3), выполняется неравенство
(9.4)
где , причем равенство имеет место тогда и только тогда, когда, т.е. среди всех функцийфункциядает наилучшее среднеквадратическое приближение к функции.
Сходимость ряда в среднем и замкнутость системы функций определяются точно так же, как в § 3:
а) если для некоторой функции выполняется равенство Парсеваля
, (9.5)
то ряд (9.3) сходится в среднем к , т.е. ;
б) ортогональная система функций (9.2) называется замкнутой на промежутке , если равенство Парсеваля выполняется для каждой функции из.
Введем в рассмотрение систему комплексных функций
. (9.6)
Свойства системы функции (9.6) следующие:
1. .
2. Функции являются 2L-периодичными: .
3. Система функций (9.6) ортогональна на промежутке –L, L. Действительно, при
.
Здесь использована формула .
4. .
Ряд Фурье для функции по системе функций (9.6) имеет вид
, (9.7)
где коэффициенты Фурье
. (9.8)
Система функций (9.6) замкнута на –L, L (принимаем без доказательства), поэтому для нее справедливы следующие утверждения:
а) ряд (9.7) сходится в среднем к ,
б) для любой функции из выполняется равенство Парсеваля,
в) среднеквадратическая погрешность, возникающая при замене функции частичной суммой ее ряда Фурье,.
Теорема Дирихле. Если вещественная и мнимая части функции удовлетворяют на промежутке –L, L условиям Дирихле, то функция является суммой своего ряда Фурье:
. (9.9)
При этом предполагается, что действуют прежние соглашения относительно значений функции в точках разрыва и на концах промежутка (см. § 3).
Упражнение 1. Доказать справедливость формулы (9.4). Доказать, что из (9.4) следует неравенство Бесселя .
Упражнение 2. Доказать справедливость утверждений 1, 2 и 4.
- Введение
- Глава 1. Ряды фурье
- § 1. Векторные пространства
- § 2. Скалярное произведение и норма функций
- § 3. Ортогональные системы функций. Коэффициенты Фурье. Ряд Фурье
- § 4. Сходимость в среднем. Равенства Парсеваля
- § 5. Тригонометрический ряд Фурье на промежутке [–l, l]
- § 6. Сходимость тригонометрического ряда Фурье. Теорема Дирихле
- § 7. Разложение в тригонометрические ряды четных и нечетных функций
- § 8. Ряд Фурье для функции, заданной на промежутке [0, l]
- § 9. Ряды Фурье для комплексных функций
- § 10. Комплексная форма тригонометрического ряда Фурье
- Глава 2. Интеграл фурье
- § 11. Сходимость интеграла Фурье
- § 12. Преобразование Фурье
- § 13. Основные сведения из теории преобразования Фурье
- Глава 3. Операционное исчисление
- § 14. Преобразование Лапласа
- § 15. Изображения простейших функций
- § 16. Основные теоремы операционного исчисления
- § 17. Формула разложения Хевисайда
- § 18. Операторный метод решения дифференциальных уравнений
- § 19. Приложения
- Примеры для самостоятельного решения
- Оглавление