§ 5. Тригонометрический ряд Фурье на промежутке [–l, l]
Система функций
(5.1)
ортогональна на промежутке –L, L (см. упражнение в § 3).
Показать, что следует самостоятельно.
Каждой функции , кусочно-непрерывной на промежутке–L, L, сопоставим ее ряд Фурье:
. (5.2)
Коэффициенты Фурье , в соответствии с (3.1), определятся формулами
(5.3)
Ряд (5.2) называется тригонометрическим рядом Фурье.
Как отмечалось в § 4, система функций (5.1) является замкнутой. Поэтому для любой кусочно-непрерывной функции ее ряд Фурье (5.2) сходится в среднем к этой функции. Равенство Парсеваля (4.5) в принятых теперь обозначениях примет вид
. (5.4)
Левая часть последнего равенства, как легко видеть, представляет собой удвоенное среднее значение квадрата функции на промежутке–L, L.
Частичные суммы
тригонометрического ряда (5.2) называются тригонометрическими полиномами Фурье. Из формулы (3.3) следует, что средняя квадратическая погрешность, возникающая при замене функции ее тригонометрическим полиномом Фурье,
. (5.5)
- Введение
- Глава 1. Ряды фурье
- § 1. Векторные пространства
- § 2. Скалярное произведение и норма функций
- § 3. Ортогональные системы функций. Коэффициенты Фурье. Ряд Фурье
- § 4. Сходимость в среднем. Равенства Парсеваля
- § 5. Тригонометрический ряд Фурье на промежутке [–l, l]
- § 6. Сходимость тригонометрического ряда Фурье. Теорема Дирихле
- § 7. Разложение в тригонометрические ряды четных и нечетных функций
- § 8. Ряд Фурье для функции, заданной на промежутке [0, l]
- § 9. Ряды Фурье для комплексных функций
- § 10. Комплексная форма тригонометрического ряда Фурье
- Глава 2. Интеграл фурье
- § 11. Сходимость интеграла Фурье
- § 12. Преобразование Фурье
- § 13. Основные сведения из теории преобразования Фурье
- Глава 3. Операционное исчисление
- § 14. Преобразование Лапласа
- § 15. Изображения простейших функций
- § 16. Основные теоремы операционного исчисления
- § 17. Формула разложения Хевисайда
- § 18. Операторный метод решения дифференциальных уравнений
- § 19. Приложения
- Примеры для самостоятельного решения
- Оглавление