logo
Господариков А

§ 5. Тригонометрический ряд Фурье на промежутке [–l, l]

Система функций

(5.1)

ортогональна на промежутке –LL (см. упражнение в § 3).

Показать, что следует самостоятельно.

Каждой функции , кусочно-непрерывной на промежутке–LL, сопоставим ее ряд Фурье:

. (5.2)

Коэффициенты Фурье , в соответствии с (3.1), определятся формулами

(5.3)

Ряд (5.2) называется тригонометрическим рядом Фурье.

Как отмечалось в § 4, система функций (5.1) является замкнутой. Поэтому для любой кусочно-непрерывной функции ее ряд Фурье (5.2) сходится в среднем к этой функции. Равенство Парсеваля (4.5) в принятых теперь обозначениях примет вид

. (5.4)

Левая часть последнего равенства, как легко видеть, представляет собой удвоенное среднее значение квадрата функции на промежутке–LL.

Частичные суммы

тригонометрического ряда (5.2) называются тригонометрическими полиномами Фурье. Из формулы (3.3) следует, что средняя квадратическая погрешность, возникающая при замене функции ее тригонометрическим полиномом Фурье,

. (5.5)