§ 6. Сходимость тригонометрического ряда Фурье. Теорема Дирихле
Функция называется кусочно-монотонной на промежутке, если этот промежуток можно разделить на конечное число частей, на каждой из которых функция монотонна.
Если функция кусочно-непрерывна и кусочно-монотонна на промежутке , то говорят, что на этом промежутке она удовлетворяет условиям Дирихле. Для таких функций справедлива принимаемая нами без доказательства следующая теорема.
Теорема Дирихле. Если функция удовлетворяет условиям Дирихле на промежутке–L, L, то ее ряд Фурье (5.2) сходится во всех точках этого промежутка. При этом во внутренних точках промежутка сумма ряда Фурье , если в точкех функция непрерывна; в точках разрыва ; на концах промежутка, где– односторонние пределы в точкеа.
Если доопределить (или переопределить) функцию , полагаяв точках разрыва иf (–L) = =на концах промежутка, то в соответствии с теоремой Дирихле
, (6.1)
где коэффициенты по-прежнему определяются формулами (5.3).
Соотношение (6.1) обычно называется разложением функции в тригонометрический ряд Фурье. Члены ряда (6.1)
(6.2)
называются гармониками. Введем в рассмотрение величины и, связанные с коэффициентами Фурьеисоотношениямии. Тогда гармоника (6.2) запишется в виде, где– амплитуда гармоники;– ее частота;– начальная фаза. Множество частотобразует дискретный частотный спектр функциина промежутке–L, L. Формула (6.1) примет вид
, (6.3)
т.е. функция, удовлетворяющая условиям Дирихле, представляет собой результат сложения бесконечного числа гармоник. При этом амплитуды и начальные фазы слагаемых гармоник зависят от разлагаемой функции, а частотный спектр одинаков для всех функций, заданных на одном и том же промежутке.
Из равенства Парсеваля (5.4) следует
, (6.4)
где .
Таким образом, сумма квадратов амплитуд гармоник равна удвоенному среднему значению квадрата функции на промежутке–L, L. Соотношение (6.4) часто называют энергетическим равенством.
В силу периодичности гармоник из сходимости ряда (6.3) на промежутке –L, L следует его сходимость всюду, т.е. на всей числовой оси. Суммой этого ряда, очевидно, будет 2L-периодическая функция , которая на промежутке–L, L совпадает с заданной функцией . Функция, определенная указанным образом, называется периодическим продолжением.
Теорема Дирихле (другая формулировка). Если функция удовлетворяет условиям Дирихле на промежутке–L, L, то тригонометрический ряд Фурье (6.1) сходится всюду к ее периодическому продолжению.
Замечание. Если функция , заданная для всех,является 2L-периодической, то ее периодическое продолжение совпадает с самой функцией, и, следовательно, ряд Фурье (6.1) представляет функцию на всей числовой оси. В этом случае можно
получить другие, иногда более удобные по сравнению с (5.3), формулы для коэффициентов Фурье:
, (6.5)
где с – любое число.
Вместо того, чтобы устанавливать справедливость формул (6.5), докажем более общее утверждение: если функция имеет период Т, то интеграл не зависит ота. Действительно,
Выполнив в среднем интеграле замену переменной и воспользовавшись периодичностью подынтегральной функции, получим
Последний интеграл не зависит от а, что, собственно, и требовалось доказать.
Таким образом, интегралы в (6.5) не зависят от с. Полагая в этих формулах , убеждаемся в тождественности выражений (5.3) и (6.5).
Если функция не является периодической, то в формулах (6.5) в подынтегральные выражения вместо функции должно входить ее периодическое продолжение .
Упражнение. Доказать, что гармоники (6.2) являются периодическими функциями с периодом 2L, т.е. .
- Введение
- Глава 1. Ряды фурье
- § 1. Векторные пространства
- § 2. Скалярное произведение и норма функций
- § 3. Ортогональные системы функций. Коэффициенты Фурье. Ряд Фурье
- § 4. Сходимость в среднем. Равенства Парсеваля
- § 5. Тригонометрический ряд Фурье на промежутке [–l, l]
- § 6. Сходимость тригонометрического ряда Фурье. Теорема Дирихле
- § 7. Разложение в тригонометрические ряды четных и нечетных функций
- § 8. Ряд Фурье для функции, заданной на промежутке [0, l]
- § 9. Ряды Фурье для комплексных функций
- § 10. Комплексная форма тригонометрического ряда Фурье
- Глава 2. Интеграл фурье
- § 11. Сходимость интеграла Фурье
- § 12. Преобразование Фурье
- § 13. Основные сведения из теории преобразования Фурье
- Глава 3. Операционное исчисление
- § 14. Преобразование Лапласа
- § 15. Изображения простейших функций
- § 16. Основные теоремы операционного исчисления
- § 17. Формула разложения Хевисайда
- § 18. Операторный метод решения дифференциальных уравнений
- § 19. Приложения
- Примеры для самостоятельного решения
- Оглавление