11.Проблема разрешимости
Пусть дана произвольная формула A(X1,…,Хn). Можно ли как-то проверить, что она является общезначимой? Если существует такой способ (алгоритм), позволяющий в конечное число шагов убедиться в этом, то говорят, что проблема проверки общезначимости формул алгебры высказываний разрешима.
Теорема 1.3. Проблема разрешимости в алгебре высказываний имеет положительное решение.
Доказательство. Рассматривая набор переменных (X1,…,Хn) на множестве { _|_, Т}, имеем 2 в степени n возможных комбинаций. Для каждой комбинации легко вычислить истинностное значение формулы А. Это можно сделать, написав программу для компьютера. Найдя все значения формулы, мы узнаем всегда ли она истинна. Если «да», то формула А общезначима.
Теорема 1.3 доказана.
Легко понять, что на практике проверить тождественную истинность формулы бывает очень сложно, если она имеет большое число переменных. На вычисление истинностных значений формулы может потребоваться слишком много машинного времени.
- 1.Алгебра высказываний
- 2.Приложения алгебры высказываний
- 3.Формулы. Вывод формул
- 4.Функции алгебры высказываний (булевы функции)
- 5.Метод синтеза релейно-контактных схем
- 6.Приложение в теории множеств
- 7.Аксиоматическая система в исчислении высказываний
- 8.Равносильные формулы
- 9.Алгебра Буля
- 10.Истинные и общезначимые формулы
- 11.Проблема разрешимости
- 12.Предикаты
- 13.Кванторы
- 14.Система аксиом в исчислении предикатов
- 15.Формальная арифметика
- 16.Алгоритмы и вычислимые функции
- 17.Алгоритм. Интуитивное представление
- 18.Нормальные алгоритмы Маркова
- 19.Машины Тьюринга
- 20.Частично рекурсивные функции
- 21.Класс примитивно рекурсивных функций
- 22.Сложность вычислений
- 23.Мера сложности
- Конечный автомат