18.Нормальные алгоритмы Маркова
Нормальный алгоритм Маркова (НАМ) — один из стандартных способов формального определения понятия алгоритма, так же как и машина Тьюринга. Понятие нормального алгоритма введено А.А. Марковым в конце 1940-х годов.
Нормальный алгоритм описывает метод переписывания строк, похожий по способу задания на формальные грамматики. Нормальный алгоритм Маркова можно рассматривать как универсальную форму задания любого алгоритма. Универсальность нормальных алгоритмов декларируется принципом нормализации: для любого алгоритма в произвольном конечном алфавите А можно построить эквивалентный ему нормальный алгоритм над алфавитом А. Условимся называть тот или иной алгоритм нормализуемым, если можно построить эквивалентный ему нормальный алгоритм, и ненормализуемым в противном случае. Принцип нормализации теперь может быть высказан в видоизмененной форме: все алгоритмы нормализуемы. Пример:
Алфавит Подстановки
{а, b, с, d, е} ас - сa,
ad - da; eca - ae
bc - cb; eda - be
bd - db; edb - be
Слова abcde и acbde - смежные (подстановка bc - cb). Слова abcde - cadbe эквивалентны.
Yandex.RTB R-A-252273-3- 1.Алгебра высказываний
- 2.Приложения алгебры высказываний
- 3.Формулы. Вывод формул
- 4.Функции алгебры высказываний (булевы функции)
- 5.Метод синтеза релейно-контактных схем
- 6.Приложение в теории множеств
- 7.Аксиоматическая система в исчислении высказываний
- 8.Равносильные формулы
- 9.Алгебра Буля
- 10.Истинные и общезначимые формулы
- 11.Проблема разрешимости
- 12.Предикаты
- 13.Кванторы
- 14.Система аксиом в исчислении предикатов
- 15.Формальная арифметика
- 16.Алгоритмы и вычислимые функции
- 17.Алгоритм. Интуитивное представление
- 18.Нормальные алгоритмы Маркова
- 19.Машины Тьюринга
- 20.Частично рекурсивные функции
- 21.Класс примитивно рекурсивных функций
- 22.Сложность вычислений
- 23.Мера сложности
- Конечный автомат