16.Алгоритмы и вычислимые функции
Алгоритм - это точное предписание, определяющее вычислительный процесс, ведущий к искомому результату (А.А.Марков).
Алгоритм - это раз и навсегда составленная программа, в которой все заранее предусмотрено. Выражаясь популярно, алгоритм - это точное, воспроизводимое, поддающееся исполнению предписание, определяющее - шаг за шагом, - каким путем надлежит решать данную задачу(Лем).
Таким образом, алгоритм - это процедура U, которая:
1) Применяется к строго определенным исходным данным А. Ее нельзя применять к другому типу данных, она либо будет не способна с ними что-то сделать, либо может выдать бессмысленный результат, т.е. результат, не поддающийся анализу с точки зрения тех ожиданий, которые связывались с алгоритмом при его создании.
2) Расчленена на отдельные простые шаги; каждый шаг состоит в непосредственной обработке возникшего к этому шагу состояния S в состояние S* =омега (подкова) с индексом u (S).
3) Непосредственная переработка S в состояние S* =омега (подкова) с индексом u (S) производится однозначно заданным способом лишь на основании информации о виде заранее ограниченной «активной» части состояния S и затрагивает лишь эту активную часть.
4) Процесс переработки Ао = А в A1 = омега u (Ao), A1 в А2 = омега u (A1), А2 в Аз = омега u (А2) и т.д. продолжается до тех пор, пока либо не произойдет безрезультатная остановка (или оператор омега u не определен для возникшего состояния), либо не появится сигнал о получении «решения». При этом не исключается возможность непрекращающегося процесса переработки.
Каждый алгоритм задает функцию, поскольку по набору исходных данных выдает результат применения алгоритма к этим данным. Естественно назвать функцию, значения которой могут находится с помощью некоторого алгоритма, - вычислимой функцией. Таким образом, вычислимая функция - это такая функция, для которой существует вычисляющий ее значения алгоритм.
Yandex.RTB R-A-252273-3- 1.Алгебра высказываний
- 2.Приложения алгебры высказываний
- 3.Формулы. Вывод формул
- 4.Функции алгебры высказываний (булевы функции)
- 5.Метод синтеза релейно-контактных схем
- 6.Приложение в теории множеств
- 7.Аксиоматическая система в исчислении высказываний
- 8.Равносильные формулы
- 9.Алгебра Буля
- 10.Истинные и общезначимые формулы
- 11.Проблема разрешимости
- 12.Предикаты
- 13.Кванторы
- 14.Система аксиом в исчислении предикатов
- 15.Формальная арифметика
- 16.Алгоритмы и вычислимые функции
- 17.Алгоритм. Интуитивное представление
- 18.Нормальные алгоритмы Маркова
- 19.Машины Тьюринга
- 20.Частично рекурсивные функции
- 21.Класс примитивно рекурсивных функций
- 22.Сложность вычислений
- 23.Мера сложности
- Конечный автомат