12.Предикаты
Предикат — любое математическое высказывание, в котором есть, по меньшей мере, одна переменная. Предикат является основным объектом изучения логики первого порядка.
Предикат (n-местный, или n-арный) — это функция с множеством значений {0,1} (или «ложь» и «истина»), определённая на множестве M = M1хM2х…хMn.Таким образом, каждый набор элементов множества M он характеризует либо как «истинный», либо как «ложный». Одноместный предикат определяет отношение принадлежности некоторому множеству. Предикат — один из элементов логики первого и высших порядков. Начиная с логики второго порядка, в формулах можно ставить кванторы по предикатам. Предикат называют тождественно-истинным и пишут:
P (x1, …, xn) = 1
если на любом наборе аргументов он принимает значение 1.Предикат называют тождественно-ложным и пишут:
P (x1, …, xn) = 0
если на любом наборе аргументов он принимает значение 0.
Предикат называют выполнимым, если хотя бы на одном наборе аргументов он принимает значение 1.Так как предикаты принимают только два значения, то к ним применимы все операции булевой алгебры, например: отрицание, импликация, конъюнкция, дизъюнкция и т. Д
Yandex.RTB R-A-252273-3- 1.Алгебра высказываний
- 2.Приложения алгебры высказываний
- 3.Формулы. Вывод формул
- 4.Функции алгебры высказываний (булевы функции)
- 5.Метод синтеза релейно-контактных схем
- 6.Приложение в теории множеств
- 7.Аксиоматическая система в исчислении высказываний
- 8.Равносильные формулы
- 9.Алгебра Буля
- 10.Истинные и общезначимые формулы
- 11.Проблема разрешимости
- 12.Предикаты
- 13.Кванторы
- 14.Система аксиом в исчислении предикатов
- 15.Формальная арифметика
- 16.Алгоритмы и вычислимые функции
- 17.Алгоритм. Интуитивное представление
- 18.Нормальные алгоритмы Маркова
- 19.Машины Тьюринга
- 20.Частично рекурсивные функции
- 21.Класс примитивно рекурсивных функций
- 22.Сложность вычислений
- 23.Мера сложности
- Конечный автомат