Лекция №3-3
ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ТОЧКИ И ПРЯМОЙ. |
Если точка принадлежит прямой, то её проекции должны принадлежать одноименным проекциям этой прямой (аксиома принадлежности точки прямой). Из четырех предложенных на рисунке 3.14 точек, только одна точка С лежит на прямой АВ.
| ||
а) эпюр |
| б) модель |
Рисунок 3.14. Взаимное расположение точки и прямой |
В тех случаях когда точка и прямая лежат в плоскости уровня (параллельной какой-либо из плоскостей проекций П1, П2 и П3), то вопрос о взаимном расположении прямой и точки решается при построении проекций на плоскость соответственно П1, П2 или П3. Например, прямаяАВ и точка К лежат в плоскости параллельной профильной плоскости проекций (рис.3.15).
| ||
а) эпюр |
| б) модель |
Рисунок 3.15 Точка и прямая, расположенные в профильной плоскости уровня |
- Виды проецирования.
- Лекция №3-1 Прямая линия. Способы графического задания прямой линии.
- 1.Двумя точками ( а и в ).
- 2. Двумя плоскостями ( .
- 3. Двумя проекциями.
- Лекция №3-2 Положение прямой относительно плоскостей проекций. Следы прямой.
- Лекция №3-3
- Лекция №3-3
- Лекция № 3-4
- Лекция №3-5 Взаимное положение двух прямых. Параллельные прямые. Пересекающиеся прямые. Скрещивающиеся прямые.
- 1. Параллельные прямые линии.
- 2. Пересекающиеся прямые.
- 3. Скрещивающиеся прямые
- Лекция №3-6 Проекции плоских углов.
- Многогранники