logo search
Высшая математика (2 семестр) / LB_6

Задание 1.1.

1. Найти полную и N-частичную суммы ряда, общий член которого равен: an=.

> restart: a[n]:=1/((3*n-2)*(3*n+1));

an:=

> S[N]:=Sum(a[n], n=1..N)=sum(a[n], n=1..N);

> S:=limit(rhs(S[N]), N=+infinity);

2. К какой функции сходится степенной ряд: ?

> Sum((-1)^(n+1)*n^2*x^n, n=1..infinity)=

sum((-1)^(n+1)*n^2*x^n, n=1..infinity);

.

3. Найти сумму степенного ряда .

> Sum((1+x)^n/((n+1)*n!), n=0..infinity)=

sum((1+x)^n/((n+1)*n!), n=0..infinity);

4. Вычислить бесконечное произведение:

> Product(2/n,n=1..infinity)=

product(2/n, n=1..infinity);

5.Вычислить произведение:

> Product( k^2, k=1..4 )= product( k^2, k=1..4 );

Разложение функции в степенной ряд и ряд Тейлора.

Разложение функции f(x) в степенной ряд в окрестности точки а

осуществляется командой series(f(x), x=a, n), где а – точка, в окрестности которой производится разложение, n – число членов ряда.

Аналогичного действия команда taylor(f(x), x=a, n) раскладывает функции f(x) в окрестности точки x=a до порядка n-1 по формуле Тейлора.

Команды series и taylor выдают результат, имеющий тип series. Для того, чтобы иметь возможность дальнейшей работы с полученным разложением, его следует преобразовать в полином с помощью команды convert(%,polynom).

Функцию многих переменных f(x1,…,xn) можно разложить в ряд Тейлора по набору переменных (x1,…,xn) в окрестности точки (a1,…,an) до порядка n с помощью команды mtaylor(f(x), [x1,…,xn], n). Эта команда находится в стандартной библиотеке, поэтому перед использованием должна быть вызвана readlib(mtaylor).