logo
Высшая математика (2 семестр) / LB_6

Задание 2.1.

1. Найти общее решение дифференциального уравнения y'+ycosx=sinxcosx.

> restart;

> de:=diff(y(x),x)+y(x)*cos(x)=sin(x)*cos(x);

de:=

> dsolve(de,y(x));

1

Итак, решение искомого уравнения есть функция 1.

Замечание: при записи решения диффреренциального уравнения в Maple в строке вывода произвольная постоянная обозначена как _С1.

  1. Найти общее решение дифференциального уравнения второго порядка y''2y'+y=sinx+ex.

> restart;

> deq:=diff(y(x),x$2)-2*diff(y(x),x)+y(x)

=sin(x)+exp(-x);

deq:=

> dsolve(deq,y(x));

Замечание: так как исходное уравнение было второго порядка, то полученное решение содержит две произвольные константы, которые в Maple обычно обознаются как _С1 и _С2. Первые два слагаемых представляют собой общее решение соответствующего однородного дифференциального уравнения, а вторые два – частное решение неоднородного дифференциального уравнения.

  1. Найти общее решение дифференциального уравнения порядка y''+k2y=sin(qx) в двух случаях: qk и q=k (резонанс).

> restart; de:=diff(y(x),x$2)+k^2*y(x)=sin(q*x);

dsolve(de,y(x));

Теперь найдем решение в случае резонанса. Для этого перед вызовом команды dsolve следует приравнять q=k.

> q:=k: dsolve(de,y(x));

Замечание: в обоих случаях частное решение неоднородного уравнения и общее решение, содержащее произвольные постоянные, выводятся отдельными слагаемыми.

Фундаментальная (базисная) система решений.

Команда dsolve предоставляет возможность найти фундаментальную систему решений (базисные функции) дифференциального уравнения. Для этого в параметрах команды dsolve следует указать output=basis.