logo
Высшая математика (2 семестр) / LB_6

Задание 1.3.

  1. Разложить в ряд Фурье функцию f(x)=x/2 с периодом 2 на интервале [0; 2], удерживая 6 членов ряда. Построить на одном рисунке графики функции и ее n-частичной суммы ряда Фурье.

Сначала полностью наберите процедуру fourierseries, предложенную выше в теоретической части.

> f:=x/2:x1:=0:x2:=2*Pi:

> fr:=fourierseries(f,x,x1,x2,6);

> plot({fr,f}, x=x1..x2, color=[blue,black],

thickness=2, linestyle=[3,1]);

Пунктирной линией изображен график n-частичной суммы ряда Фурье, а сплошной – самой функции. По виду n-частичной суммы ряда Фурье в данном примере легко установить общий вид этого ряда:

.

  1. Разложить несколько раз в ряд Фурье функцию с периодом 2 на интервале [;], удерживая 2, 4 и 8 членов ряда. Построить на одном рисунке графики функции и ее n-частичных сумм ряда Фурье.

> f:=exp(-x);x1:=-Pi;x2:=Pi:

> fr1:=fourierseries(f,x,x1,x2,2):

> fr2:=fourierseries(f,x,x1,x2,4):

> fr3:=fourierseries(f,x,x1,x2,8):

> plot({f,fr1,fr2,fr3},x=x1..x2,color=[black, blue, green, red], thickness=2, linestyle= [1,3,2,2]);

Сплошной линией изображен график функции, пунктирными – графики n-частичных сумм ряда Фурье. Видно, что чем больше слагаемых ряда удерживать, тем ближе расположен график суммы ряда к графику самой функции.