Задание 2.5.
1. Найти решение задачи Коши: ,в виде степенного ряда с точностью до 5-го порядка.
> restart; Order:=5:
> dsolve({diff(y(x),x)=y(x)+x*exp(y(x)),
y(0)=0}, y(x), type=series);
В полученном решении слагаемое означает, что точность разложения была до 5-го порядка.
2. Найти общее решение дифференциального уравнения y''(х)y3(х)=ехcosx, в виде разложения в степенной ряд до 4-го порядка. Найти разложение при начальных условиях: y(0)=1, y'(0)=0.
> restart; Order:=4: de:=diff(y(x),x$2)-
y(x)^3=exp(-x)*cos(x):
> f:=dsolve(de,y(x),series);
Замечание: в полученном разложении запись D(y)(0) обозначает производную в нуле: y'(0). Для нахождения частого решения осталось задать начальные условия:
> y(0):=1: D(y)(0):=0:f;
3. Найти приближенное решение в виде степенного ряда до 6-го порядка и точное решение задачи Коши: ,,,. Построить на одном рисунке графики точного и приближенного решений.
> restart; Order:=6:
> de:=diff(y(x),x$3)-diff(y(x),x)=
3*(2-x^2)*sin(x);
de:=
> cond:=y(0)=1, D(y)(0)=1, (D@@2)(y)(0)=1;
cond:=y(0)=1, D(y)(0)=1, D(2)(y)(0)=1
> dsolve({de,cond},y(x));
y(x)=
> y1:=rhs(%):
> dsolve({de,cond},y(x), series);
y(x)=
Замечание: тип решения дифференциального уравнения в виде ряда есть series, поэтому для дальнейшего использования такого решения (вычислений или построения графика) его обязательно следует конвертировать в полином с помощью команды convert
> convert(%,polynom): y2:=rhs(%):
> p1:=plot(y1,x=-3..3,thickness=2,color=black):
> p2:=plot(y2,x=-3..3, linestyle=3,thickness=2,
color=blue):
> with(plots): display(p1,p2);
На этом рисунке видно, что наилучшее приближение точного решения степенным рядом достигается примерно на интервале 1<x<1.
- VI. Дифференциальные уравнения. Ряды.
- §1. Ряды и произведения
- Задание 1.1.
- Задание 1.2.
- Задание 1.3.
- §2. Аналитическое решение дифференциальных уравнений
- Задание 2.1.
- Задание 2.2.
- Задание 2.3.
- Задание 2.4.
- Задание 2.5.
- §3. Численное решение дифференциальных уравнений
- Задание 3.1.
- Задание 3.2.
- Контрольные задания.
- Контрольные вопросы.