logo search
ii_intuit_00

Иерархический кластерный анализ

Процедура иерархического кластерного анализа в SPSS предусматривает группировку как объектов (строк матрицы данных), так и переменных (столбцов). Можно считать, что в последнем случае роль объектов играют переменные, а роль переменных — столбцы.

Этот метод реализует иерархический агломеративный алгоритм. Его смысл заключается в следующем. Перед началом кластеризации все объекты считаются отдельными кластерами, которые в ходе алгоритма объединяются. Вначале выбирается пара ближайших кластеров, которые объединяются в один кластер. В результате количество кластеров становится равным N-1. Процедура повторяется, пока все классы не объединятся. На любом этапе объединение можно прервать, получив нужное число кластеров. Таким образом, результат работы алгоритма агрегирования определяют способы вычисления расстояния между объектами и определения близости между кластерами.

Для определения расстояния между парой кластеров могут быть сформулированы различные разумные подходы. С учетом этого в SPSS предусмотрены следующие методы, определяемые на основе расстояний между объектами:

Расстояния и меры близости между объектами. У нас нет возможности сделать полный обзор всех коэффициентов, поэтому остановимся лишь на характерных расстояниях и мерах близости для определенных видов данных.

Меры близости отличаются от расстояний тем, что они тем больше, чем более похожи объекты.

Пусть имеются два объекта X=(X1,…,Xm) и Y=(Y1,…,Ym). Применяя эту запись для объектов, определить основные виды расстояний, используемых процедуре CLUSTER:

Эвклидово расстояние и его квадрат целесообразно использовать для анализа количественных данных.