ii_intuit_00
Заключительные замечания
В данной лекции рассмотрены некоторые алгоритмы, которые мы можем отнести к эволюционным и/или переборным. Сразу обращает на себя внимание тот факт, что во всех эволюционных алгоритмах в той или иной мере присутствует перебор, который придает им одно уникальное свойство — универсальность. В то же время, ни один из передовых алгоритмов не использует перебор в чистом виде. Все они имеют те или иные схемы для предотвращения полного перебора, для чего практически всегда используется такое свойство окружающего нас мира (не только материального), как ступенчатость — ограниченность воздействия одних систем на соседние, в результате чего появляется возможность организовывать параллельный поиск.
Содержание
- Лекция 1 Цель преподавания дисциплины
- Терминология
- Философские аспекты проблемы систем ии (возможность существования, безопасность, полезность).
- История развития систем ии.
- Лекция 2 Различные подходы к построению систем ии
- Вспомогательные системы нижнего уровня (распознавание образов зрительных и звуковых, идентификация, моделирование, жесткое программирование) и их место в системах ии
- Лекция 3 Понятие образа
- Проблема обучения распознаванию образов (оро)
- Геометрический и структурный подходы.
- Гипотеза компактности
- Обучение и самообучение
- Лекция 4: Адаптация и обучение
- Персептроны
- Нейронные сети История исследований в области нейронных сетей
- Модель нейронной сети с обратным распространением ошибки (back propagation)
- Нейронные сети: обучение без учителя
- Нейронные сети Хопфилда и Хэмминга
- Метод потенциальных функций
- Метод группового учета аргументов мгуа Метод наименьших квадратов
- Общая схема построения алгоритмов метода группового учета аргументов (мгуа)
- Алгоритм с ковариациями и с квадратичными описаниями
- Метод предельных упрощений (мпу)
- Коллективы решающих правил
- Лекция 5: Методы и алгоритмы анализа структуры многомерных данных
- Иерархический кластерный анализ
- Стандартизация
- Быстрый кластерный анализ
- Кластерный анализ
- Иерархическое группирование
- Лекция 6: Логический подход к построению систем ии Неформальные процедуры
- Алгоритмические модели
- Продукционные модели
- Режим возвратов
- Логический вывод
- Зависимость продукций
- Продукционные системы с исключениями
- Язык Рефал
- Лекция 7: Экспертные системы Экспертные системы, базовые понятия
- Экспертные системы, методика построения
- Этап идентификации
- Этап концептуализации
- Этап формализации
- Этап выполнения
- Этап тестирования
- Этап опытной эксплуатации
- Экспертные системы, параллельные и последовательные решения
- Пример эс, основанной на правилах логического вывода и действующую в обратном порядке
- Часть 1.
- Лекция 8: Машинная эволюция Метод перебора как наиболее универсальный метод поиска решений. Методы ускорения перебора
- Эволюция
- Генетический алгоритм (га)
- Как создать хромосомы?
- Как работает генетический алгоритм?
- Эволюционное (генетическое) программирование
- Автоматический синтез технических решений
- Поиск оптимальных структур
- Алгоритм поиска глобального экстремума
- Алгоритм конкурирующих точек
- Алгоритм случайного поиска в подпространствах
- Некоторые замечания относительно использования га
- Лекция 9. Автоматизированный синтез физических принципов действия. Синтез речи Фонд физико-технических эффектов
- Синтез физических принципов действия по заданной физической операции
- Заключительные замечания
- Слабосвязанный мир
- Разделяй и властвуй
- Синтез речи
- Голосовой аппарат человека
- Структура языка
- Технология
- Методы синтеза
- Волновой метод кодирования
- Параметрическое представление
- Синтез по правилам
- Конвертация текста в речь
- Система преобразования текста в речь miTalk
- Анализ текста
- Морфологический анализ
- Правила "буква-звук" и лексическое ударение
- Парсинг
- Модификация ударения и фонологические уточнения
- Просодическая рамка
- Синтез фонетических сегментов
- Оценка синтетической речи