Метод предельных упрощений (мпу)
По тому, как организован процесс обучения распознающих систем, четко выделяются два подхода к проблеме ОРО. Первый основан на построении сложных разделяющих поверхностей в случайно выбранных пространствах, а во втором центр тяжести проблемы переносится на достижение понимания принципов формирования такого описания объектов, в рамках которого сам процесс распознавания чрезвычайно прост. Обучение в этом случае рассматривается как некий процесс конструирования пространств для решения конкретных задач.
В МПУ предполагается, что разделяющая функция задается заранее в виде линейного (самого простого) полинома, а процесс обучения состоит в конструировании такого пространства минимальной размерности, в котором заранее заданная наиболее простая разделяющая функция безошибочно разделяет обучающую последовательность. МПР назван так потому, что в нем строится самое простое решающее правило в пространстве небольшой размерности, т. е. в простом пространстве.
Пусть на некотором множестве объектов V заданы два подмножества и , определяющие собой образы на обучающей последовательности V. Рассмотрим i -е свойство объектов, такое, что некоторые объекты обучающей последовательности этим свойством обладают, а другие — нет. Пусть заданным свойством обладают объекты, образующие подмножество V1i, а объекты подмножества V2i этим свойством не обладают ( ). Тогда i -е свойство называют признаком первого типа относительно образа , если выполняются соотношения
( 4.50) |
и признаком второго типа, если выполняются
( 4.51) |
Если же выполняются соотношения
( 4.52) |
то i -е свойство считается признаком первого типа относительно образа , а если выполняются
( 4.53) |
то это же свойство объявляется признаком второго типа относительно образа . Если свойство не обладает ни одной из приведенных особенностей, то оно вообще не относится к признакам и не участвует в формировании пространства.
Одинаковые признаки — это два признака xi и xj, порождающие подмножества V1j, V2j, V1i, V2i, такие, что
V1j= V1i и V2j= V2i.(4.54)
Доказано утверждение, смысл которого заключается в том, что если пространство конструировать из однотипных, но неодинаковых признаков, то в конце концов будет построено такое пространство, в котором обучающая последовательность будет безошибочно разделена на два образа линейным, т. е. самым простым, решающим правилом.
Метод предельных упрощений состоит в том, что в процессе обучения последовательно проверяются все возможные свойства объектов и из них выбираются только такие, которые обладают хотя бы одной из особенностей, определяемых соотношениями (4.50), (4.51). Такой отбор однотипных, но неодинаковых признаков продолжается до тех пор, пока при некотором значении размерности пространства не наступит безошибочное линейное разделение образов на обучающей последовательности. В зависимости от того, из признаков какого типа строится пространство, в качестве разделяющей плоскости выбирается плоскость, описываемая уравнением
( 4.55) |
либо уравнением
( 4.56) |
Каждый объект относится к одному из образов в зависимости от того, по какую сторону относительно плоскости находится соответствующий этому объекту вектор в пространстве признаков размерности n.
- Лекция 1 Цель преподавания дисциплины
- Терминология
- Философские аспекты проблемы систем ии (возможность существования, безопасность, полезность).
- История развития систем ии.
- Лекция 2 Различные подходы к построению систем ии
- Вспомогательные системы нижнего уровня (распознавание образов зрительных и звуковых, идентификация, моделирование, жесткое программирование) и их место в системах ии
- Лекция 3 Понятие образа
- Проблема обучения распознаванию образов (оро)
- Геометрический и структурный подходы.
- Гипотеза компактности
- Обучение и самообучение
- Лекция 4: Адаптация и обучение
- Персептроны
- Нейронные сети История исследований в области нейронных сетей
- Модель нейронной сети с обратным распространением ошибки (back propagation)
- Нейронные сети: обучение без учителя
- Нейронные сети Хопфилда и Хэмминга
- Метод потенциальных функций
- Метод группового учета аргументов мгуа Метод наименьших квадратов
- Общая схема построения алгоритмов метода группового учета аргументов (мгуа)
- Алгоритм с ковариациями и с квадратичными описаниями
- Метод предельных упрощений (мпу)
- Коллективы решающих правил
- Лекция 5: Методы и алгоритмы анализа структуры многомерных данных
- Иерархический кластерный анализ
- Стандартизация
- Быстрый кластерный анализ
- Кластерный анализ
- Иерархическое группирование
- Лекция 6: Логический подход к построению систем ии Неформальные процедуры
- Алгоритмические модели
- Продукционные модели
- Режим возвратов
- Логический вывод
- Зависимость продукций
- Продукционные системы с исключениями
- Язык Рефал
- Лекция 7: Экспертные системы Экспертные системы, базовые понятия
- Экспертные системы, методика построения
- Этап идентификации
- Этап концептуализации
- Этап формализации
- Этап выполнения
- Этап тестирования
- Этап опытной эксплуатации
- Экспертные системы, параллельные и последовательные решения
- Пример эс, основанной на правилах логического вывода и действующую в обратном порядке
- Часть 1.
- Лекция 8: Машинная эволюция Метод перебора как наиболее универсальный метод поиска решений. Методы ускорения перебора
- Эволюция
- Генетический алгоритм (га)
- Как создать хромосомы?
- Как работает генетический алгоритм?
- Эволюционное (генетическое) программирование
- Автоматический синтез технических решений
- Поиск оптимальных структур
- Алгоритм поиска глобального экстремума
- Алгоритм конкурирующих точек
- Алгоритм случайного поиска в подпространствах
- Некоторые замечания относительно использования га
- Лекция 9. Автоматизированный синтез физических принципов действия. Синтез речи Фонд физико-технических эффектов
- Синтез физических принципов действия по заданной физической операции
- Заключительные замечания
- Слабосвязанный мир
- Разделяй и властвуй
- Синтез речи
- Голосовой аппарат человека
- Структура языка
- Технология
- Методы синтеза
- Волновой метод кодирования
- Параметрическое представление
- Синтез по правилам
- Конвертация текста в речь
- Система преобразования текста в речь miTalk
- Анализ текста
- Морфологический анализ
- Правила "буква-звук" и лексическое ударение
- Парсинг
- Модификация ударения и фонологические уточнения
- Просодическая рамка
- Синтез фонетических сегментов
- Оценка синтетической речи