Алгоритм конкурирующих точек
Алгоритм конкурирующих точек в общем виде включает следующие операции.
По процедуре СДС синтезируется точек , в которых определяется значение минимизируемой функции (критерия сравнения). Из этих точек отбирается точек, имеющих наилучшие значения критерия, которые в дальнейшем называются основными. Запоминается наихудшее значение критерия основных точек . При этом считается, что совершен нулевой глобальный (групповой) шаг поиска (t = 0).
Таким образом, на t -м групповом шаге поиска имеем основные точки
-
( 10)
и, соответственно, невозрастающую последовательность чисел
-
( 11)
Каждая основная точка делает шаг локального поиска, в результате чего точки (10) переходят в новую последовательность
( 12)
Синтезируется дополнительных допустимых точек, каждой из которых разрешается сделать t+1 шагов локального поиска при условии, что после каждого шага с номером ее критерий не хуже, чем соответствующий член последовательности (11). При нарушении этого условия точка исключается и не участвует в дальнейшем поиске глобального экстремума. Таким образом, имеется дополнительных точек, сделавших t+1 шаг локального поиска:
( 13)
Среди точек (12) и (13) отбирается точек с лучшими критериями:
( 14)
которые являются основными на t+1 -м групповом шаге поиска. Значение худшего критерия точек из последовательности (14) дополняет последовательность (11) числом .
Цикл по пп. 2—4 повторяется до нахождения глобального экстремума по заданным условиям прекращения поиска. В качестве условий прекращения поиска могут быть использованы, например, выполнение заданного числа Т групповых шагов.
Считая параметры независимыми от i, будем иметь только два настраиваемых параметра алгоритма; — число основных точек и — число дополнительных точек.
Проведенные исследования позволяют рекомендовать следующие оптимальные значения этих параметров: , . Для простоты реализации алгоритма можно брать постоянные значения и .
В качестве процедуры ШЛП рекомендуется использовать следующие алгоритмы поиска локального экстремума:
алгоритм случайного поиска в подпространствах;
алгоритм случайного поиска с выбором по наилучшей пробе;
алгоритм сопряженных градиентов;
алгоритм Нельдера-Мида.
- Лекция 1 Цель преподавания дисциплины
- Терминология
- Философские аспекты проблемы систем ии (возможность существования, безопасность, полезность).
- История развития систем ии.
- Лекция 2 Различные подходы к построению систем ии
- Вспомогательные системы нижнего уровня (распознавание образов зрительных и звуковых, идентификация, моделирование, жесткое программирование) и их место в системах ии
- Лекция 3 Понятие образа
- Проблема обучения распознаванию образов (оро)
- Геометрический и структурный подходы.
- Гипотеза компактности
- Обучение и самообучение
- Лекция 4: Адаптация и обучение
- Персептроны
- Нейронные сети История исследований в области нейронных сетей
- Модель нейронной сети с обратным распространением ошибки (back propagation)
- Нейронные сети: обучение без учителя
- Нейронные сети Хопфилда и Хэмминга
- Метод потенциальных функций
- Метод группового учета аргументов мгуа Метод наименьших квадратов
- Общая схема построения алгоритмов метода группового учета аргументов (мгуа)
- Алгоритм с ковариациями и с квадратичными описаниями
- Метод предельных упрощений (мпу)
- Коллективы решающих правил
- Лекция 5: Методы и алгоритмы анализа структуры многомерных данных
- Иерархический кластерный анализ
- Стандартизация
- Быстрый кластерный анализ
- Кластерный анализ
- Иерархическое группирование
- Лекция 6: Логический подход к построению систем ии Неформальные процедуры
- Алгоритмические модели
- Продукционные модели
- Режим возвратов
- Логический вывод
- Зависимость продукций
- Продукционные системы с исключениями
- Язык Рефал
- Лекция 7: Экспертные системы Экспертные системы, базовые понятия
- Экспертные системы, методика построения
- Этап идентификации
- Этап концептуализации
- Этап формализации
- Этап выполнения
- Этап тестирования
- Этап опытной эксплуатации
- Экспертные системы, параллельные и последовательные решения
- Пример эс, основанной на правилах логического вывода и действующую в обратном порядке
- Часть 1.
- Лекция 8: Машинная эволюция Метод перебора как наиболее универсальный метод поиска решений. Методы ускорения перебора
- Эволюция
- Генетический алгоритм (га)
- Как создать хромосомы?
- Как работает генетический алгоритм?
- Эволюционное (генетическое) программирование
- Автоматический синтез технических решений
- Поиск оптимальных структур
- Алгоритм поиска глобального экстремума
- Алгоритм конкурирующих точек
- Алгоритм случайного поиска в подпространствах
- Некоторые замечания относительно использования га
- Лекция 9. Автоматизированный синтез физических принципов действия. Синтез речи Фонд физико-технических эффектов
- Синтез физических принципов действия по заданной физической операции
- Заключительные замечания
- Слабосвязанный мир
- Разделяй и властвуй
- Синтез речи
- Голосовой аппарат человека
- Структура языка
- Технология
- Методы синтеза
- Волновой метод кодирования
- Параметрическое представление
- Синтез по правилам
- Конвертация текста в речь
- Система преобразования текста в речь miTalk
- Анализ текста
- Морфологический анализ
- Правила "буква-звук" и лексическое ударение
- Парсинг
- Модификация ударения и фонологические уточнения
- Просодическая рамка
- Синтез фонетических сегментов
- Оценка синтетической речи