Коллективы решающих правил
Давно известны приемы повышения качества принимаемых решений, состоящие в объединении специалистов той или иной области знаний в коллектив, вырабатывающий совместное решение. Идею коллективного решения можно применить и к "коллективу" формальных алгоритмов, что позволит повысить эффективность решения многих задач.
Для рационального использования особенностей различных алгоритмов при решении задач распознавания возможно объединить различные по характеру алгоритмы распознавания в коллективы, которые формируют классификационное решение на основе правил, принятых в теории коллективных решений. Пусть в некоторой ситуации Х принимается решение S. Тогда S=R(X), гдеR — алгоритм принятия решения в ситуации X. Предположим, что существует L различных алгоритмов решения задачи, т. е.Sl=Rl(X), l=1, 2, ... , L, где Sl — решение, полученное алгоритмом Rl. Будем называть множество алгоритмов {R}={R1, R2, ..., Ri.} коллективом алгоритмов решения задачи (коллективом решающих правил), если на множестве решений Slв любой ситуации Х определено решающее правило F, т. е. S=F(S1, S2, ..., SL, X). Алгоритмы Rl принято называть членами коллектива, Sl — решением l -го члена коллектива, а S — коллективным решением. Функция F определяет способ обобщения индивидуальных решений в решения коллектива S. Поэтому синтез функции F, или способ обобщения, является центральным моментом в организации коллектива.
Принятие коллективного решения может быть использовано при решении различных задач. Так, в задаче управления под ситуацией понимается ситуация среды и целей управления, а под решением — самоуправление, приводящее объект в целевое состояние. В задачах прогноза Х — исходное, а S — прогнозируемое состояние. В задачах распознавания ситуацией Хявляется описание объекта X, т. е. его изображение, а решением S — номер образа, к которому принадлежит наблюдаемое изображение. Индивидуальное и коллективное решения в задаче распознавания состоят в отнесении некоторого изображения к одному из образов. Наиболее интересными коллективами распознающих алгоритмов являются такие, в которых существует зависимость веса каждого решающего правила Rl от распознаваемого изображения. Например, вес решающего правила Rlможет определяться соотношением
( 4.57) |
где Bl — область компетентности решающего правила Rl. Веса решающих правил выбираются так, что
( 4.58) |
для всех возможных значений X. Соотношение (4.57) означает, что решение коллектива определяется решением того решающего правила Ri, области компетентности которого принадлежит изображение объекта X. Такой подход представляет собой двухуровневую процедуру распознавания. На первом уровне определяется принадлежность изображения той или иной области компетентности, а уже на втором — вступает в силу решающее правило, компетентность которого максимальна в найденной области. Решение этого правила отождествляется с решением всего коллектива. Основным этапом в такой организации коллективного решения является обучение распознаванию областей компетентности. Практически постановкой этой задачи различаются правила организации решения коллектива. Области компетентности можно искать, используя вероятностные свойства правил коллектива, можно применить гипотезу компактности и считать, что одинаковым правилам должны соответствовать компактные области, которые можно выделить алгоритмами самообучения. В процессе обучения сначала выделяются компактные множества и соответствующие им области, а затем в каждой из этих областей восстанавливается свое решающее правило. Решение такого правила, действующего в определенной области, объявляется диктаторским, т. е. отождествляется с решением всего коллектива.
В персептроне каждый A -элемент может интерпретироваться как член коллектива. В процессе обучения все A -элементы приобретают веса, в соответствии с которыми эти A -элементы участвуют в коллективном решении. Особенность каждого A -элемента состоит в том, что он действует в некотором подпространстве исходного пространства, характер которого определяется связями между S - и A -элементами. Решение, получаемое на выходе персептрона, можно интерпретировать как средневзвешенное решение коллектива, состоящего из всех A -элементов.
- Лекция 1 Цель преподавания дисциплины
- Терминология
- Философские аспекты проблемы систем ии (возможность существования, безопасность, полезность).
- История развития систем ии.
- Лекция 2 Различные подходы к построению систем ии
- Вспомогательные системы нижнего уровня (распознавание образов зрительных и звуковых, идентификация, моделирование, жесткое программирование) и их место в системах ии
- Лекция 3 Понятие образа
- Проблема обучения распознаванию образов (оро)
- Геометрический и структурный подходы.
- Гипотеза компактности
- Обучение и самообучение
- Лекция 4: Адаптация и обучение
- Персептроны
- Нейронные сети История исследований в области нейронных сетей
- Модель нейронной сети с обратным распространением ошибки (back propagation)
- Нейронные сети: обучение без учителя
- Нейронные сети Хопфилда и Хэмминга
- Метод потенциальных функций
- Метод группового учета аргументов мгуа Метод наименьших квадратов
- Общая схема построения алгоритмов метода группового учета аргументов (мгуа)
- Алгоритм с ковариациями и с квадратичными описаниями
- Метод предельных упрощений (мпу)
- Коллективы решающих правил
- Лекция 5: Методы и алгоритмы анализа структуры многомерных данных
- Иерархический кластерный анализ
- Стандартизация
- Быстрый кластерный анализ
- Кластерный анализ
- Иерархическое группирование
- Лекция 6: Логический подход к построению систем ии Неформальные процедуры
- Алгоритмические модели
- Продукционные модели
- Режим возвратов
- Логический вывод
- Зависимость продукций
- Продукционные системы с исключениями
- Язык Рефал
- Лекция 7: Экспертные системы Экспертные системы, базовые понятия
- Экспертные системы, методика построения
- Этап идентификации
- Этап концептуализации
- Этап формализации
- Этап выполнения
- Этап тестирования
- Этап опытной эксплуатации
- Экспертные системы, параллельные и последовательные решения
- Пример эс, основанной на правилах логического вывода и действующую в обратном порядке
- Часть 1.
- Лекция 8: Машинная эволюция Метод перебора как наиболее универсальный метод поиска решений. Методы ускорения перебора
- Эволюция
- Генетический алгоритм (га)
- Как создать хромосомы?
- Как работает генетический алгоритм?
- Эволюционное (генетическое) программирование
- Автоматический синтез технических решений
- Поиск оптимальных структур
- Алгоритм поиска глобального экстремума
- Алгоритм конкурирующих точек
- Алгоритм случайного поиска в подпространствах
- Некоторые замечания относительно использования га
- Лекция 9. Автоматизированный синтез физических принципов действия. Синтез речи Фонд физико-технических эффектов
- Синтез физических принципов действия по заданной физической операции
- Заключительные замечания
- Слабосвязанный мир
- Разделяй и властвуй
- Синтез речи
- Голосовой аппарат человека
- Структура языка
- Технология
- Методы синтеза
- Волновой метод кодирования
- Параметрическое представление
- Синтез по правилам
- Конвертация текста в речь
- Система преобразования текста в речь miTalk
- Анализ текста
- Морфологический анализ
- Правила "буква-звук" и лексическое ударение
- Парсинг
- Модификация ударения и фонологические уточнения
- Просодическая рамка
- Синтез фонетических сегментов
- Оценка синтетической речи