§ 19. Приложения
Электрические цепи. Основными элементами электрических цепей являются сопротивления, индуктивности и емкости (конденсаторы). Каждый из этих элементов называются двухполюсником, поскольку он обладает двумя контактами (полюсами), которые соединяются с полюсами других элементов цепи. Электрическое состояние двухполюсника в каждый момент времени определяется двумя величинами: силой тока (током), проходящего через двухполюсник, и падением напряжения (напряжением)на его полюсах. Для каждого двухполюсника функцииисвязаны некоторым соотношением, представляющим собой физический закон, управляющий работой двухполюсника.
Для сопротивления имеет место закон Ома
,
где – сопротивление двухполюсника.
Для индуктивности справедливо соотношение
,
где – индуктивность двухполюсника.
Для конденсатора выполняется соотношение
,
где С – емкость конденсатора; – начальный заряд на его обкладках.
В дальнейшем будем считать, что в начальный момент времени цепь была свободна от токов и зарядов, что соответствует задачам включения.
Если ввести операторный ток и операторное напряжениекак изображения функцийисоответственно, то вышеприведенные уравнения, управляющие работой двухполюсников, перейдут в следующие:
.
Последние соотношения могут быть записаны в виде операторного закона Ома
,
где операторное сопротивление (импеданс) в случае активного сопротивления, индуктивности и емкости принято в виде соответственно . Величину, обратную,называют операторной проводимостью (адмитансом) двухполюсника.
При последовательном соединении двух двухполюсников с операторными сопротивлениями иимеем;и, откуда, и следовательно, импеданс цепи. Аналогично, при параллельном соединении двух элементов с адмитансамииполучим,,, откуда, и следовательно, адмитанс цепи.
Таким образом, в задачах включения операторные сопротивления и проводимости цепей рассчитываются по обычным правилам соединения активных сопротивлений. Например, если цепь состоит из последовательно соединенных сопротивления , индуктивностии емкости, шунтированной сопротивлением, то ее импеданс.
Если электрическая цепь с адмитансом включена наэдс , то операторный ток в ней определяется соотношением,.
Как правило, операторная проводимость цепи представляет собой рациональную дробь, полюсы (корни знаменателя) которой расположены в левой полуплоскости, что, как следует из теоремы Хевисайда, гарантирует устойчивость системы, т.е. исключает возможность возникновения в такой системе незатухающих свободных колебаний.
Если эдс является ограниченной функцией времени, то полюсы функцииимеют неотрицательные вещественные части, и следовательно (см. замечание 2 к теореме Хевисайда), по истечении достаточно длительного промежутка времени в системе устанавливается стационарный режим, при котором ток
,
где ;– чисто мнимые полюсы функциис положительными мнимыми частями;– мнимая единица. Здесь, как и ранее, предполагаем, что функцияне имеет кратных полюсов.
Представим эдс тригонометрическим рядом Фурье . Тогда
;
;,
следовательно,
.
Положим
,
где – амплитуда гармоники с частотой,k – ее начальная фаза; ;. Тогда
. (19.1)
Функции иназываются амплитудно-частотной (АЧХ) и фазочастотной характеристиками (ФЧХ) системы.
Будем трактовать функции и, как входной и выходной сигналы соответственно. Из формулы (19.1) следует, что, если на вход системы поступает сигнал с частотой, амплитудой а и начальной фазой , то по завершении переходных процессов на выходе формируется сигнал той же частоты с амплитудой и с фазой, сдвинутой относительно фазы входного сигнала на величину. Таким образом, амплитудно-частотная и фазочастотная характеристики представляют собой соответственно коэффициент усиления (ослабления) и сдвиг фазы сигнала при его прохождении через систему. То значение, при котором АЧХ достигает максимума, называется резонансной частотой системы.
Пример. Колебательный контур состоит из последовательно соединенных активного сопротивления , индуктивностии емкостиC. Найти резонансную частоту.
Решение. Импеданс контура, его адмитанс. Амплитудно-частотная и фазочастотная характеристики соответственно
;
. (19.2)
Из формулы (19.2) следует, что АЧХ достигает наибольшего значения, если .
Таким образом, колебательный контур резонирует на частоту , наибольший коэффициент усиления сигнала равен, сдвиг фазы на резонансной частоте равен нулю.
Расчет длинных электрических линий. Обозначим – удельные сопротивление, индуктивность и емкость провода соответственно;– коэффициент утечки тока;и– ток и напряжение в точке с координатойх в момент времени . Тогда для участка линии между точкамих и по известным законам физики будем иметь
;
. (19.3)
Разделив уравнения (19.3) на х и перейдя к пределу при х 0, получим систему уравнений в частных производных (телеграфную систему) для определения функций и:
;
. (19.4)
Для завершения постановки задачи систему (19.4) необходимо дополнить начальными и краевыми условиями. В задаче включения начальные условия имеют вид
. (19.5)
Далее примем, что правый конец провода заземлен, а на левом его конце поддерживается заданное напряжение . Тогда краевые условия запишутся в виде
, (19.6)
где – длина линии.
Применяя к системе (19.4) преобразование Лапласа по переменной с учетом начальных условий (19.5), получим операторную систему
, (19.7)
где и– изображения напряжения и тока соответственно. Краевые условия (19.6) перейдут в
, (19.8)
где .
Применяя снова преобразование Лапласа, на этот раз по переменной х, вместо (19.7) запишем алгебраическую систему
; , (19.9)
где ;;;– параметр преобразования Лапласа по переменнойх.
В дальнейшем, чтобы избежать громоздких выкладок, ограничимся исследованием установившегося режима в линии без искажений, т.е. линии, параметры которой удовлетворяют условию .
Решение системы (19.9) для линии без искажений имеет вид
,
где .
Возвратимся к оригиналам:
;
. (19.10)
С помощью второго из краевых условий (19.8) найдем
. (19.11)
Из (19.10) и (19.11) следует, что
;
. (19.12)
При отыскании функций ибудем использовать теорему разложения Хевисайда, для чего необходимо найти полюсы изображений (19.12). Нули гиперболического синуса определяются из уравнения, откудаи,Следовательно, нули функции– это числа, расположенные в левой полуплоскости. Поэтому, если– ограниченная функция, то, как следует из (19.12), напряжение и ток в установившемся режиме соответственно
где – чисто мнимые полюсы функциис положительными мнимыми частями.
В частности, если , то, и следовательно, в установившемся режиме
;
.
- Введение
- Глава 1. Ряды фурье
- § 1. Векторные пространства
- § 2. Скалярное произведение и норма функций
- § 3. Ортогональные системы функций. Коэффициенты Фурье. Ряд Фурье
- § 4. Сходимость в среднем. Равенства Парсеваля
- § 5. Тригонометрический ряд Фурье на промежутке [–l, l]
- § 6. Сходимость тригонометрического ряда Фурье. Теорема Дирихле
- § 7. Разложение в тригонометрические ряды четных и нечетных функций
- § 8. Ряд Фурье для функции, заданной на промежутке [0, l]
- § 9. Ряды Фурье для комплексных функций
- § 10. Комплексная форма тригонометрического ряда Фурье
- Глава 2. Интеграл фурье
- § 11. Сходимость интеграла Фурье
- § 12. Преобразование Фурье
- § 13. Основные сведения из теории преобразования Фурье
- Глава 3. Операционное исчисление
- § 14. Преобразование Лапласа
- § 15. Изображения простейших функций
- § 16. Основные теоремы операционного исчисления
- § 17. Формула разложения Хевисайда
- § 18. Операторный метод решения дифференциальных уравнений
- § 19. Приложения
- Примеры для самостоятельного решения
- Оглавление