Если применить к той же функции формулу Маклорена
,
то получаем:
……………………………….
Итого, получаем:
Рассмотрим способ разложения функции в ряд при помощи интегрирования.
С помощью интегрирования можно разлагать в ряд такую функцию, для которой известно или может быть легко найдено разложение в ряд ее производной.
Находим дифференциал функции и интегрируем его в пределах от 0 до х.
Пример. Разложить в ряд функцию
Разложение в ряд этой функции по формуле Маклорена было рассмотрено выше.
(См. функция y=ln(1+x)) Теперь решим эту задачу при помощи интегрирования.
При получаем по приведенной выше формуле:
Разложение в ряд функции может быть легко найдено способом алгебраического деления аналогично рассмотренному выше примеру.
Тогда получаем:
Окончательно получим:
Пример. Разложить в степенной ряд функцию .
Применим разложение в ряд с помощью интегрирования.
Подинтегральная функция может быть разложена в ряд методом алгебраического деления:
1 1 + x2
1 + x2 1 – x2 + x4- …
- x2
- x2 – x4
x4
x4 + x6
………….
Тогда
Окончательно получаем:
- Ряды Основные определения
- Свойства рядов.
- Необходимый признак сходимости ряда
- Ряды с неотрицательными членами
- Признаки сравнения рядов
- Признак Даламбера
- Признак Коши (радикальный признак)
- Интегральный признак Коши
- Знакопеременные ряды. Знакочередующиеся ряды
- Признак Лейбница
- Признак Дирихле—Абеля
- Абсолютная и условная сходимость рядов
- Признаки Даламбера и Коши для знакопеременных рядов
- Свойства абсолютно сходящихся рядов
- Функциональные последовательности
- Функциональные ряды
- Свойства равномерно сходящихся рядов
- Степенные ряды.
- Теоремы Абеля.
- Действия со степенными рядами
- Разложение функций в степенные ряды.
- Если применить к той же функции формулу Маклорена
- Решение дифференциальных уравнений с помощью степенных рядов.
- Критерий Коши.