logo search
Ряды_теория примеры

Критерий Коши.

(необходимые и достат очные условия сходимости ряда)

Для того, чтобы последовательность была сходящейся, необходимо и достаточно, чтобы для любогосуществовал такой номерN, что при n > N и любом p > 0, где р – целое число, выполнялось бы неравенство:

.

Доказательство. (необходимость)

Пусть , тогда для любого числа найдется номер N такой, что неравенство

выполняется при n>N. При n>N и любом целом p>0 выполняется также неравенство . Учитывая оба неравенства, получаем:

Необходимость доказана. Доказательство достаточности рассматривать не будем.

Сформулируем критерий Коши для ряда.

Для того, чтобы ряд был сходящимся необходимо и достаточно, чтобы для любогосуществовал номерN такой, что при n>N и любом p>0 выполнялось бы неравенство

.

Однако, на практике использовать непосредственно критерий Коши не очень удобно. Поэтому как правило используются более простые признаки сходимости:

Следствие. Если f(x) и (х) – непрерывные функции на интервале (a, b] и то интегралыиведут себя одинаково в смысле сходимости.