4. Производная от многочлена
Понятие кратного корня тесно связано с понятием производной от многочлена. Мы изучаем многочлены с любыми комплексными коэффициентами и поэтому не можем просто воспользоваться понятием производной, введенным в курсе математического анализа. То, что будет сказано ниже, следует рассматривать как независимое от курса анализа определение производной многочлена.
Пусть дан многочлен n-ной степени
f(x)=
с любыми комплексными коэффициентами. Его производной (первой производной) называется многочлен (n- 1)-й степени
Производная от многочлена нулевой степени и от нуля считается равной нулю. Производная от первой производной называется второй производной от многочлена f(x) и обозначается через f“(x) . Очевидно, что
и по этому , то есть (n+1)-я производная от многочлена n-й степени равна нулю.
Свойства, являющиеся формулами дифференцирования для суммы и произведения:
1. (4.1)
2. (4.2)
Эти формулы легко проверить, впрочем, непосредственным подсчетом, беря в качестве и два произвольных многочлена и применяя данное выше определение производной.
Формула (4.2) распространяется на случай произведения любого конечного числа множителей, а поэтому выводится формула для производной от степени:
3. (4.3)
Доказательство. Используем метод математической индукции.
.
Если число с является k -кратным корнем многочлена f(x), то при k>1 оно будет (k-1)-кратным корнем первой производной этого многочлена; если же k=1 , то с не будет служить корнем для .
В самом деле, пусть
, , (4.4)
где уже не делится на х-с. Дифференцируя равенство (4.4), получаем:
.
Первое слагаемое суммы делится на х-с, а второе на х-с не делится; поэтому вся эта сумма на х-с не может делиться. Учитывая, что частное от деления f(x) на определено однозначно, мы получаем, что является наибольшей степенью двучлена х-с, на которую делится многочлен .
Применяя эту теорему несколько раз, мы получаем, что k-кратный корень многочлена f(x) будет (k-s)-кратным в s-й производной этого многочлена и впервые не будет служить корнем для k-й производной от f(x).
Пример. Найти производную многочлена .
.
Я составила программу для нахождения первой производной многочлена.
unit Unit1;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Grids;
type
TForm1 = class(TForm)
Edit1: TEdit;
Label1: TLabel;
SGd1: TStringGrid;
Label2: TLabel;
Button1: TButton;
Edit2: TEdit;
Edit3: TEdit;
Label3: TLabel;
Label4: TLabel;
procedure Button1Click(Sender: TObject);
private
{ Private declarations }
public
{ Public declarations }
end;
var
Form1: TForm1;
c,i,st:integer;
k,l,s:string;
kof:array[0..100] of integer;
implementation
{$R *.dfm}
procedure TForm1.Button1Click(Sender: TObject);
begin
st:=StrToInt(Edit1.Text);
for i:=0 to st do begin
if SGd1.Cells[i,0]<> then
kof[st-i]:=StrToInt(SGd1.Cells[i,0])
else MessageDlg (Внимание! Не введены значения коэффициентов!,mtWarning,[mbOK],0);
end;
s:=f(x)=;
for i:=st downto 0 do begin
if kof[i]<>0 then begin
if(kof[i-1]<0)or(i=0) then begin
str(kof[i],l);
str(i,k);
s:=s+l+x^+k;
end
else begin
str(kof[i],l);
str(i,k);
s:=s+l+x^+k++;
end;
end;
kof[i]:=kof[i]*i;
end;
Edit2.Text:=s;
s:=f1(x)=;
for i:=st downto 0 do begin
if kof[i]<>0 then begin
if(kof[i-1]<0)or(i=1) then begin
str(kof[i],l);
str(i-1,k);
s:=s+l+x^+k;
end
else begin
str(kof[i],l);
str(i-1,k);
s:=s+l+x^+k++;
end;
end;
Edit3.Text:=s;
end;
end;
end.
- 16. Обратимые, ассоциированные многочлены, деление с остатком. Нод, нок многочленов и алгоритм Евклида. Теорема Безу.
- 22. Алгоритм Евклида в кольце многочленов?
- Алгоритм разложения многочлена на множители с помощью формул квадрата суммы и квадрата разности:
- 23. Теорема Безу. Нод многочленов и алгоритм Евклида.
- 8) Нод многочленов. Алгоритм Евклида.
- Делимость многочленов. Наибольший общий делитель. Алгоритм Евклида. Расширенный алгоритм Евклида.
- 19) Значение многочлена. Корень многочлена. Теорема Безу и её важнейшее следствие.
- Многочлен Лагранжа
- 2.3 Деление многочленов
- §2. Деление многочленов с остатком. Алгоритм Евклида. Критерий взаимной простоты двух многочленов.