logo
Вивчення систем, еквівалентних системам з відомим типом крапок спокою

Введення

У курсовій роботі розглядається вложима система з відомим типом крапок спокою. Як відомо система є вложимою, якщо будь-який компонент цієї системи вложима, тобто система вложима тоді й тільки тоді, коли множина її рішень є підмножиною множини рішень деякої лінійної стаціонарної системи.

В 1-2 м пунктах розглядається вложима система, з відомим типом крапок спокою. Далі перевіряємо чи є x і y загальним рішенням нашої системи рівнянь.

В 3-м ми знаходимо перший інтеграл системи й перевіряємо виконання тотожності.

В 4-м пункті досліджуємо функції, що відбивають

В 5-м пункті застосовуємо теорему про еквівалентність диференціальних систем