Вивчення систем, еквівалентних системам з відомим типом крапок спокою
Введення
У курсовій роботі розглядається вложима система з відомим типом крапок спокою. Як відомо система є вложимою, якщо будь-який компонент цієї системи вложима, тобто система вложима тоді й тільки тоді, коли множина її рішень є підмножиною множини рішень деякої лінійної стаціонарної системи.
В 1-2 м пунктах розглядається вложима система, з відомим типом крапок спокою. Далі перевіряємо чи є x і y загальним рішенням нашої системи рівнянь.
В 3-м ми знаходимо перший інтеграл системи й перевіряємо виконання тотожності.
В 4-м пункті досліджуємо функції, що відбивають
В 5-м пункті застосовуємо теорему про еквівалентність диференціальних систем
Содержание
Похожие материалы
- 3.3. Тип даних з плаваючою крапкою
- Крапка з комою
- Крапка з комою
- Потенціал спокою. Потенціал дії.
- 1.7.2. Блок додавання чисел у формі з фіксованою крапкою
- Карти з типом легенди Щільність крапок
- Тип float (числа з крапкою, що плаває)
- §1.28 Зв’язок енергії з імпульсом і маси з енергією спокою
- Стан спокою у рослин
- Умови входження рослин у період спокою