Вивчення систем, еквівалентних системам з відомим типом крапок спокою

курсовая работа

3. Знаходження першого інтеграла диференціальної системи й умови його існування

Розглянемо систему = f (t, x), x= (x,…,x), (t,x) (1) с безперервної в області D функцією f. Функція U (t, x), задана в деякої під області G області D, називається першим інтегралом системи (1) в області G, якщо для будь-якого рішення x (t), t, системи (1), графік якого розташований в G функція U (t, x (t)), t, постійна, тобто U (t, x (t)) залежить тільки від вибору рішення x (t) і не залежить від t.

Нехай V (t, x), V: G R, є деяка функція. Похідній від функції V у силу системи (1) назвемо функцію V V R, обумовлену рівністю

V (t, x (t)) t.

Лема 1.

Для будь-якого рішення x (t), t, системи (1), графік якого розташований в G, має місце тотожність

V t.

Без доказу.

Лема 2.

Функція U (t, x), U: G R, являє собою перший інтеграл системи (1) тоді й тільки тоді, коли похідна U у силу системи (1) тотожно в G звертається в нуль.

Необхідність. Нехай U (t, x) є перший інтеграл системи (1). Тоді для будь-якого рішення x (t) цієї системи, застосовуючи лему 1 будемо мати тотожності

U

Звідки при t=t одержимо рівність U (t справедливе при всіх значеннях t і x (t). Необхідність доведена.

Достатність. Нехай тепер U при всіх (t, x) Тоді для будь-якого рішення x (t) системи (1) на підставі леми 1 будемо мати тотожності

а з ним і достатність.

З визначення першого інтеграла треба, що постійна на G функція також є першим інтегралом системи (1). Перший інтеграл U (t, x) будемо називати на G, якщо при всіх (t, x) виконується нерівність.

Функцію U (x) будемо називати стаціонарним першим інтегралом системи (1), якщо вона не залежить від t і є першим інтегралом системи (1).

Знайдемо перший інтеграл нашої системи:

Піднесемо до квадрата й виразимо з

y

Покладемо , одержимо

Перевіримо, що функція - це перший інтеграл системи (1), тобто перевіримо виконання тотожності (2)

Знайдемо похідні по t, x, y

Після вище зроблених перетворень одержуємо, що функція - це перший інтеграл системи (1), 2) Покладемо , тобто , де , Q

3) Перевіримо виконання тотожності:

(3), де

Перетворимо (3).

[у нашім випадку ] =

=

[з огляду на всі зроблені позначення] =

=

=

=

[через те, що котре у свою чергу як ми вже показали їсти тотожний нуль]

Таким чином, тотожність (3) щире.

Делись добром ;)