logo
Суммирование расходящихся рядов

3.2 Взаимоотношение между методами Пуассона-Абеля и Чезаро

Начнем с простого замечания: если ряд (А) суммируем по методу средних арифметических к конечной “сумме” А, то необходимо

Действительно, из и следует, что

а тогда и

что и требовалось доказать.

Теорема (Фробениуса). Если ряд (А) суммируем по методу средних арифметических к конечной “сумме” А, то одновременно он суммируем также по методу Пуассона-Абеля и притом к той же сумме.

Доказательство. Итак, пусть . Ввиду сделанного вначале замечания очевидна сходимость степенного ряда

для 0<x<1. Выполнив дважды преобразование Абеля, последовательно получим

[при этом следует помнить, что ].

Известно, что (для 0<x<1) или

Умножим обе части тождества на А и вычтем из него почленно предыдущее тождество:

Сумму справа разобьем на две:

Причем число N выберем так, чтобы при было

где - произвольное наперед заданное положительное число. Тогда вторая сумма по абсолютной величине и сама будет меньше (независимо от ), а для первой суммы того же можно добиться за счет приближения x к 1. Этим и завершается доказательство.

Итак, мы установили, что во всех случаях, где приложим метод Чезаро, приложим и метод Пуассона-Абеля с тем же результатом.

Обратное же неверно: существуют ряды суммируемые методом Пуассона-Абеля, но не имеющие “обобщенной суммы" в смысле Чезаро. Рассмотрим, например, ряд

Так здесь явно не соблюдено необходимое условие суммируемости по методу средних арифметических, то этот метод не приложим. В то же время ряд

Имеет (при 0<x<1) сумму , которая при стремится к пределу . Это и есть “обобщенная сумма" нашего ряда по Пуассону-Абелю.

Таким образом, метод Пуассона-Абеля является более мощным, то есть приложим в более широком классе случаев, чем метод Чезаро, но не противоречит ему в тех случаях, когда они оказываются приложимыми оба.