13.Подгруппа, порожденная данным множеством. Нормальная подгруппа, порожденная данным множеством.
…Подгруппа ― подмножество H группы G, само являющееся группой относительно операции, определяющей G .Подмножество H группы G является её подгруппой тогда и только тогда, когда: H содержит единичный элемент из Gсодержит произведение любых двух элементов из H,содержит вместе со всяким своим элементом h обратный к нему элемент .В случае конечных и, вообще, периодических групп проверка условия 2 является излишней. Всякая подгруппа, отличная от всей группы, называется истинной подгруппой этой группы. Истинная подгруппа некоторой бесконечной группы может быть изоморфна самой группе.Сама группа G и единичная подгруппа называется несобственными подгруппами группы G, все остальные ― собственными. Пересечение всех подгрупп группы G, содержащих все элементы некоторого непустого множества M, называется подгруппой, порожденной множеством M, и обозначается <M>.Если M состоит из одного элемента a, то <a> называется циклической подгруппой элемента a.Группа, совпадающая с одной из своих циклических подгрупп, называется циклической группой.Если группа изоморфна некоторой подгруппе H группы G, то говорят, что группа может быть вложена в группу G.Теоретико-множественное пересечение любых двух (и любого множества) подгрупп группы G является подгруппой группы G.Теоретико-множественное объединение подгрупп, вообще говоря, не обязано являться подгруппой. Объединением подгрупп H и K называется подгруппа, порожденная объединением множеств .Гомоморфный образ подгрупп ― подгруппа.Если даны две группы и каждая из них изоморфна некоторой истинной подгруппе другой, то отсюда еще не следует изоморфизм самих этих групп.
- 1.Отношение делимости в кольце целых чисел. Простые числа. Те-ма Евклида. Осн-я теорема арифм-ки.
- 2.Нод чисел, его свойства, алгоритм Евклида. Нок чисел.
- 3. Отношение сравнимости целых чисел по модулю данного натурального числа и его свойства. Классы вычетов по модулю m.
- 4. Вычеты и операции над ними, кольцо вычетов.
- 5. Кольцо вычетов. Сравнения в кольце вычетов, решение сравнения ax≡1(mod m).
- 7.Примитивные, обратимые классы. Случай, когда кольцо является полем. Функция Эйлера, ее свойства. Теорема Эйлера. Теорема Ферма.
- 8. Инъективное, сюръективное и биективное отображения множеств, примеры. Изоморфизм групп, примеры.
- 9.Подгруппы. Классы смежности по подгруппе.
- 10.Циклические группы.
- 11.Нормальные подгруппы и факторгруппы.
- 12.Гомоморфизм групп, его виды, примеры. Ядро гомоморфизма, его свойства.
- 13.Подгруппа, порожденная данным множеством. Нормальная подгруппа, порожденная данным множеством.
- 14.Подстановки. Симметричные группы, примеры.
- 15. Построение кольца многочленов от одной переменной над кольцом с единицей, степень многочлена, степень суммы и произведения многочленов.
- 16. Обратимые, ассоциированные многочлены, деление с остатком. Нод, нок многочленов и алгоритм Евклида. Теорема Безу.
- 17. Взаимно простые многочлены, их свойства.
- 21. Векторное пространство, его базис и размерность. Построение базиса. Координаты вектора.
- 22.Линейное отображение векторных пространств, его матрица. Линейные преобразования векторных пространств.
- 23. Собственные значения, собственные векторы, их свойства.
- 24.Скалярное произведение в вещественном и комплексном пространстве. Евклидово и унитарное пространство. Матрица Грама.