1.7. Равномерное распределение непрерывной случайной величины
Закон равномерного распределения вероятностей непрерывной случайной величины используется при имитационном моделировании сложных систем на ЭВМ как первоначальная основа для получения всех необходимых статистических моделей. При этом, если специально не оговорен закон распределения случайных чисел, то имеют ввиду равномерное распределение.
Распределение вероятностей называют равномерным, если на интервале (a,b), которому принадлежат все возможные значения случайной величины, дифференциальная функция распределения имеет постоянное значение, т. е. f(x) = C.
Так как
то
Отсюда закон равномерного распределения аналитически можно записать так:
График дифференциальной функции равномерного распределения вероятностей представлен на рис.5
Рис. 5 График дифференциальной функции равномерного распределения вероятностей.
Интегральную функцию равномерного распределения аналитически можно записать так:
График интегральной функции равномерного распределения вероятностей представлен на рис. 6
Рис. 6 График интегральной функции равномерного распределения вероятностей.
- Методические указания
- Для решения контрольной и самостоятельной работы
- По разделу математики
- «Элементы теории вероятностей и математической статистики»
- I. Элементы теории вероятностей
- 1.1. Случайные величины. Вероятность случайного события
- 1.2.Теоремы сложения, умножения вероятностей
- 1.3 .Формула полной вероятности. Формула Бейеса
- Формула Бейеса. (формула гипотез)
- 1.4. Закон распределения дискретной случайной величины
- Формула Пуассона
- Локальная формула Муавра-Лапласа
- Интегральная форма Лапласа
- 1.5. Интегральная функция распределения
- 1.6. Дифференциальная функция распределения
- 1.7. Равномерное распределение непрерывной случайной величины
- 1.8.Числовые характеристики случайных величин
- 1.7. Нормальный закон распределения вероятностей непрерывной случайной величины
- 2.Элементы математической статистики
- I. Выборки и их характеристики
- 1.1. Выборочный метод и способы составления выборок
- 1.2. Статистическое распределение и его геометрическое изображение
- Алгоритм составления дискретного статистического распределения:
- Гистограмма и полигон плотности относительных частот
- 1.3. Числовые характеристики вариационного ряда
- 1.4.Статистические оценки параметров распределения. Доверительные интервалы
- 1.5. Статистическая проверка статистических гипотез
- II Элементы корреляционного анализа
- 2.1. Статистическая зависимость случайных величин. Уравнения регрессии.
- 2.2. Корреляционная зависимость. Коэффициент корреляции.
- 1) Метод квадратов
- 2) Ранговый метод
- 2.3. Проверка гипотезы о значимости выборочного
- Разбор типовых задач Тема: Формула вероятности события
- Тема: формула полной вероятности
- Тема :случайная величина и ее числовые характеристики числовые характеристики дискретных случайных величин
- Числовые характеристики непрерывных случайных величин
- Тема:Функции распеределения
- Тема: Элементы статистической обработки данных
- Тема :понятие о корреляционной зависимости
- Вопросы для самопроверки Основные понятия теории вероятностей. Теоремы сложения и умножения вероятностей.
- Повторные независимые испытания
- Случайная величина и ее числовые характеристики
- Основные сведения из математической статистики Вопросы для самопроверки
- Понятие о корреляционной зависимости Вопросы для самопроверки
- Статистические оценки параметров распределения
- Вопросы для самопроверки
- Задания для самостоятельной работы по теме «Элементы теории вероятностей и математической статистики »
- Задания для контрольной работы по теме «Элементы теории вероятностей и математической статистики»
- Контрольная работа «Статистическое оценивание данных»
- Вариант – 1
- Стандартные коэффициенты корреляции, которые считаются достоверными (по л.С. Каминскому)
- Литература