2.1. Статистическая зависимость случайных величин. Уравнения регрессии.
Зависимость между значениями одной случайной величины и условным математическим ожиданием другой случайной величины носит название статистической.
Чтобы изучить статистическую зависимость, нужно знать условное математическое ожидание случайной величины. Для его оценки необходимо знать аналитический вид двумерного распределения (X,Y). Однако, суждение об аналитическом виде двумерного распределения, сделанного по отдельной ограниченной по объёму выборке, может привести к серьёзным ошибкам. Поэтому идут на упрощение и переходят от условного математического ожидания случайной величины к условному среднему значению, т.е. принимают, что
Статистическую зависимость Y от X описывают с помощью уравнения вида
где - условное математическое ожидание величиныY, соответствующее данному значению х; х – отдельные значения величины Х; - некоторая функция. Это уравнение называется уравнением регрессииY на Х.
Обратную статистическую зависимость можно описать уравнением регрессии X на Y:
где - условное математическое ожидание величины Х, соответствующее данному значениюy случайной величины Y; - некоторая функция.
Функции иназывают соответственно регрессиямиY на X и X на Y, а их графики – линиями регрессии Y на Х и X на Y. Уравнения регрессии выражают математическое ожидание случайной величины Y (или X) для случая, когда другая переменная принимает определенное число.
В зависимости от вида уравнений регрессии и формы соответствующих линий регрессии говорят о различной форме статистической зависимости между изучаемыми величинами – линейной, квадратичной, показательной и т.д.
Если функции ,линейные, т.е. уравнения регрессии можно представить в виде:
,
где A,B,C,D – некоторые параметры, то описываемые этими уравнениями зависимости Y от X и X от Y называются линейными; линии регрессии при этом – прямые. Если линия регрессии не является прямой, то такую зависимость называют нелинейной.
Как уже было сказано выше, возможности практического применения статистической зависимости весьма ограниченны. Поэтому для характеристики формы связи между двумя случайными величинами, полученными в результате выборочных наблюдений, используют корреляционную зависимость(или). Уравнения, описываемые подобной зависимостью, называют выборочными уравнениями регрессии.
Если функции ,линейные, то выборочные уравнения линейной регрессииY на Xи X на Y можно представить в виде:
,
где и- условные средние значения величинY и X, параметры b и d - оценки B и D, и- выборочные оценки коэффициентовA и C.
Угловые коэффициенты илиний регрессии носят названиявыборочных коэффициентов регрессии Y на X и X на Y соответственно. Они определяются как:
; ,
где
Из курса аналитической геометрии следует, что коэффициент линейной регрессии (угловой коэффициент линии регрессии) численно равен тангенсу угла наклона линии регрессии к соответствующей оси координат. Следовательно, чем больше, например, коэффициент линейной регрессииY на X, то есть, чем больше угол наклона прямой к оси ох, тем больше изменяется среднее значение величины Y при изменении значений величины X.
- Методические указания
- Для решения контрольной и самостоятельной работы
- По разделу математики
- «Элементы теории вероятностей и математической статистики»
- I. Элементы теории вероятностей
- 1.1. Случайные величины. Вероятность случайного события
- 1.2.Теоремы сложения, умножения вероятностей
- 1.3 .Формула полной вероятности. Формула Бейеса
- Формула Бейеса. (формула гипотез)
- 1.4. Закон распределения дискретной случайной величины
- Формула Пуассона
- Локальная формула Муавра-Лапласа
- Интегральная форма Лапласа
- 1.5. Интегральная функция распределения
- 1.6. Дифференциальная функция распределения
- 1.7. Равномерное распределение непрерывной случайной величины
- 1.8.Числовые характеристики случайных величин
- 1.7. Нормальный закон распределения вероятностей непрерывной случайной величины
- 2.Элементы математической статистики
- I. Выборки и их характеристики
- 1.1. Выборочный метод и способы составления выборок
- 1.2. Статистическое распределение и его геометрическое изображение
- Алгоритм составления дискретного статистического распределения:
- Гистограмма и полигон плотности относительных частот
- 1.3. Числовые характеристики вариационного ряда
- 1.4.Статистические оценки параметров распределения. Доверительные интервалы
- 1.5. Статистическая проверка статистических гипотез
- II Элементы корреляционного анализа
- 2.1. Статистическая зависимость случайных величин. Уравнения регрессии.
- 2.2. Корреляционная зависимость. Коэффициент корреляции.
- 1) Метод квадратов
- 2) Ранговый метод
- 2.3. Проверка гипотезы о значимости выборочного
- Разбор типовых задач Тема: Формула вероятности события
- Тема: формула полной вероятности
- Тема :случайная величина и ее числовые характеристики числовые характеристики дискретных случайных величин
- Числовые характеристики непрерывных случайных величин
- Тема:Функции распеределения
- Тема: Элементы статистической обработки данных
- Тема :понятие о корреляционной зависимости
- Вопросы для самопроверки Основные понятия теории вероятностей. Теоремы сложения и умножения вероятностей.
- Повторные независимые испытания
- Случайная величина и ее числовые характеристики
- Основные сведения из математической статистики Вопросы для самопроверки
- Понятие о корреляционной зависимости Вопросы для самопроверки
- Статистические оценки параметров распределения
- Вопросы для самопроверки
- Задания для самостоятельной работы по теме «Элементы теории вероятностей и математической статистики »
- Задания для контрольной работы по теме «Элементы теории вероятностей и математической статистики»
- Контрольная работа «Статистическое оценивание данных»
- Вариант – 1
- Стандартные коэффициенты корреляции, которые считаются достоверными (по л.С. Каминскому)
- Литература