Короткі теоретичні відомості
Функція f називається неперервною в точці х0, якщо , тобто якщо виконуються умови: а); ;б)існує скінчена границя в точці х0; в) ця границя дорівнює значенню функції в точці х0.
При порушенні хоча б однієї з цих умов функція називається розривною в точці ,а сама ця точка називається точкою розриву.
Точка х0 називається точкою розриву першого роду, якщо в ній існують скінчені односторонні границі
та , а якщо хоч одна з границь є нескінченою або взагалі не існує, то - другого роду.
Пряма називається асимптотою кривої або графіка функції y=f(x), якщо відстань від точки М(x;f(x))кривої до цієї прямої прямує до нуля при віддаленні точки М в нескінченність.
Якщо , то пряма х=х0 називається вертикальною асимптотою кривої y=f(x). При цьому розглянута границя може бути односторонньою, а під символом слід розуміти + або - .
Якщо , то пряма називається похилою асимптотою кривої . При цьому якщо k=0, то асимптота називається горизонтальною.
Числа k і b обчислюють за формулами
(1)
При цьому вказані границі можуть бути різними, при (для правої похилої асимптоти)і при (для лівої похилої асимптоти).
Приклад. Знайти асимптоти кривої .
Оскільки , то х=4 є вертикальною асимптотою.
Знайдемо похилу асимптоту. Користуючись формулами (1), дістанемо
Отже, пряма y=2x+8 є похилою асимптотою.
Питання для контролю вивченого матеріалу
Дайте означення неперервної функції.
Що таке точка розриву? Які вони бувають?
Що називається асимптотою кривої?
Які бувають асимптоти та як вони знаходяться?
Знайти асимптоти кривої .
Література
Валуцэ И.И., Дилигул Г.Д., Математика для техникумов на базе средней школы: Учеб. пособие 2-е изд., перераб. и доп.-М.:Наука,1990-576с.:ил.
Соколенко О.И Вища математика: Підручник -К.: Видавничий центр „Академія”,2002-432с.
Дюженкова Л.І.Носаль Т.В. Вища математика: Практикум: Навч. посібник.-К.: Вища шк.,1991-407с.:іл.
Розділ 4. Диференціальне числення функції однієї змінної
- Розділ 3. Вступ до математичного аналізу
- Тема 1: Границя функції в точці і на нескінченності. Перша і друга «чудові» границі.
- Короткі теоретичні відомості
- Питання для контролю вивченого матеріалу
- Література
- Тема 2: Точки розриву. Асимптоти.
- Короткі теоретичні відомості
- Тема 1: Геометричний і фізичний зміст похідної. Рівняння дотичної та нормалі до графіка функції.
- Питання для контролю вивченого матеріалу
- Література
- Тема 2: Складена функція та її похідна.
- Короткі теоретичні відомості
- Питання для контролю вивченого матеріалу
- Література
- Тема 3: Похідні і диференціали вищих порядків.
- Короткі теоретичні відомості.
- Література:
- Тема 4: Теореми Ролля, Лагранжа, Коші, їх геометрична ілюстрація та застосування. Правило Лопіталя.
- Питання для контролю вивченого матеріалу
- Література
- Тема 5: Задачі на максимум та мінімум.
- Короткі теоретичні відомості
- Питання для контролю вивченого матеріалу
- Література