Принципы системного подхода в моделировании систем
В настоящее время при анализе и синтезе сложных (больших) систем получил развитие системный подход, который отличается от классического (или индуктивного) подхода. Последний рассматривает систему путем перехода от частного к общему и синтезирует (конструирует) систему путем слияния ее компонент, разрабатываемых раздельно. В отличие от этого системный подход предполагает последовательный переход от общего к частному, когда в основе рассмотрения лежит цель, причем исследуемый объект выделяется из окружающей среды.
Объект моделирования. Специалисты по проектированию и эксплуатации сложных систем имеют дело с системами управления различных уровней, обладающими общим свойством – стремлением достичь некоторой цели. Эту особенность учтем в следующих определениях системы.СистемаS– целенаправленное множество взаимосвязанных элементов любой природы.Внешняя среда Е– множество существующих вне системы элементов любой природы, оказывающих влияние на систему или находящихся под ее воздействием.
В зависимости от цели исследования могут рассматриваться разные соотношения между самим объектом Sи внешней средойЕ. Таким образом, в зависимости от уровня, на котором находится наблюдатель, объект исследования может выделяться по-разному и могут иметь место различные взаимодействия этого объекта с внешней средой.
С развитием науки и техники сам объект непрерывно усложняется и уже говорят об объекте исследования как о некоторой сложной системе, которая состоит из различных компонент, взаимосвязанных друг с другом. Поэтому, рассматривая системный подход как основу для построения больших систем и как базу создания методики их анализа и синтеза, прежде всего необходимо определить само понятие системного подхода.
Системный подход – это элемент учения об общих законах развития природы и одно из выражений диалектического учения. Можно привести разные определения системного подхода, но наиболее правильно то, которое позволяет оценить познавательную сущность этого подхода при таком методе исследования систем, как моделирование. Поэтому весьма важны выделение самой системы S и внешней среды Е из объективно существующей реальности и описание системы исходя из общесистемных позиций.
При системном подходе к моделированию систем необходимо, прежде всего, четко определить цель моделирования. Поскольку невозможно полностью смоделировать реально функционирующую систему (систему-оригинал, или первую систему), создается модель (система-модель, или вторая система) под поставленную проблему. Таким образом, применительно к вопросам моделирования цель возникает из требуемых задач моделирования, что позволяет подойти к выбору критерия и оценить, какие элементы войдут в создаваемую модель М. Поэтому необходимо иметь критерий отбора отдельных элементов в создаваемую модель.
Подходы к исследованию систем. Важным для системного подхода является определениеструктуры системы– совокупности связей между элементами системы, отражающих их взаимодействие. Структура системы может изучаться извне с точки зрения состава отдельных подсистем и отношений между ними, а также изнутри, когда анализируются отдельные свойства, позволяющие системе достигать заданной цели, т.е. когда изучаются функции системы. В соответствии с этим наметился ряд подходов к исследованию структуры системы с ее свойствами, к которым следует прежде всего отнести структурный и функциональный.
При структурном подходевыявляются состав выделенных элементов системыSи связи между ними. Совокупность элементов и связи между ними позволяют судить о структуре системы. Последняя в зависимости от цели исследования может быть описана на разных уровнях рассмотрения. Наиболее общее описание структуры – это топологическое описание, позволяющее определить в самых общих понятиях составные части системы и хорошо формализуемое на базе теории графов.
Менее общим является функциональное описание, когда рассматриваются отдельные функции, т.е. алгоритмы поведения системы, и реализуется функциональный подход, оценивающий функции, которые выполняет система, причем под функцией понимается свойство, приводящее к достижению цели. Поскольку функция отображает свойство, а свойство отображает взаимодействие системыS с внешней средой Е, то свойства могут быть выражены в виде либо некоторых характеристик элементовSi(j)и подсистемSiсистемы, либо системыSв целом.
При наличии некоторого эталона сравнения можно ввести количественные и качественные характеристики систем. Для количественной характеристики вводятся числа, выражающие отношения между данной характеристикой и эталоном. Качественные характеристики системы находятся, например, с помощью метода экспертных оценок.
Проявление функций системы во времени S(t), т.е.функционирование системы, означает переход системы из одного состояния в другое, т.е. движение в пространстве состоянийZ. При эксплуатации системыSвесьма важно качество ее функционирования, определяемое показателем эффективности и являющееся значением критерия оценки эффективности. Существуют различные подходы к выбору критериев оценки эффективности. СистемаSможет оцениваться либо совокупностью частных критериев, либо некоторым общим интегральным критерием.
Следует отметить, что создаваемая модель Mс точки зрения системного подхода также является системой, т.е., и может рассматриваться по отношению к внешней средеЕ. Наиболее просты по представлению модели, в которых сохраняется прямая аналогия явления. Применяют также модели, в которых нет прямой аналогии, а сохраняются лишь законы и общие закономерности поведения элементов системыS.Правильное понимание взаимосвязей как внутри самой моделиM, так и взаимодействия ее с внешней средойЕв значительной степени определяется тем, на каком уровне находится наблюдатель.
Простой подход к изучению взаимосвязей между отдельными частями модели предусматривает рассмотрение их как отражение связей между отдельными подсистемами объекта. Такой классический подход может быть использован при создании достаточно простых моделей. Процесс синтеза модели Mна основе классического (индуктивного) подхода представлен на рис. 1.4а
а) б)
Рис. 1.4. Процесс синтеза модели на основе классического (а)
и системного (б) подходов
Реальный объект, подлежащий моделированию разбивается на отдельные подсистемы, т.е. выбираются исходные данные Ддля моделирования и ставятся целиЦ, отображающие отдельные стороны процесса. По отдельной совокупности исходных данныхДставится цель моделирования отдельной стороны функционирования системы, на базе этой цели формируется некоторая компонентаКбудущей модели. Совокупность компонент объединяется в модельM.
Таким образом, разработка модели Mна базе классического подхода означает суммирование отдельных компонент в единую модель, причем каждая из компонент решает свои собственные задачи и изолирована от других частей модели. Поэтому классический подход может быть использован для реализации сравнительно простых моделей, в которых возможно разделение и взаимно независимое рассмотрение отдельных сторон функционирования реального объекта. Для модели сложного объекта такая разобщенность решаемых задач недопустима, т.к. приводит к значительным затратам ресурсов при реализации модели на базе конкретных программно-технических средств. Можно отметить две отличительные стороны классического подхода: наблюдается движение от частного к общему, создаваемая модель (система) образуется путем суммирования отдельных ее компонент и не учитывается возникновение нового системного эффекта.
С усложнением объектов моделирования возникла необходимость наблюдения их с более высокого уровня. В этом случае наблюдатель (разработчик) рассматривает данную систему Sкак некоторую подсистему какой-то метасистемы, т.е. системы с более высокого ранга и вынужден перейти на позиции нового системного подхода, который позволит ему построить не только исследуемую систему, решающую совокупность задач, но и создавать систему, являющуюся частью метасистемы. Например, если ставится задача проектирования АСУ предприятием, то с позиции системного подхода нельзя забывать о том, что эта система является составной частью АСУ объединения.
Системный подход получил применение в системотехнике в связи с необходимостью исследования больших реальных систем, когда сказалась недостаточность, а иногда ошибочность принятия каких-либо частных решений. На возникновение системного подхода повлияли увеличивающееся количество исходных данных при разработке, необходимость учета сложных стохастических связей в системе и воздействия внешней среды Е. Все это заставило исследователей изучать сложный объект не изолировано, а во взаимодействии с внешней средой, а также в совокупности с другими системами некоторой метасистемы.
Системный подход позволяет решить проблему с учетом всех факторов и возможностей, пропорциональных их значимости, на всех этапах исследования системы Sи построения моделиM. системный подход означает, что каждая системаSявляется интегрированным целым даже тогда, когда она состоит из отдельных разобщенных подсистем. Таким образом, в основе системного подхода лежит рассмотрение системы как интегрированного целого, причем это рассмотрение при разработке начинается с главного – формулировки цели функционирования. Процесс синтеза моделиМна базе системного подхода условно представлен на рис. 1.4б. На основе исходных данныхД, которые известны из анализа внешней системы, тех ограничений, которые накладываются на систему сверху либо исходя из возможностей ее реализации, и на основе цели функционирования формулируются исходные требованияТк модели системыS. На базе этих требований формируются ориентировочно некоторые подсистемыП, элементыЭи осуществляется наиболее сложный этап синтеза – выборВсоставляющих системы, для чего используются специальные критерии выбораКВ.
При моделировании необходимо обеспечить максимальную эффективность модели системы. Эффективность обычно определяется как некоторая разность между какими-то показателями ценности результатов, полученных в итоге эксплуатации модели, и теми затратами, которые были вложены в ее разработку и создание.
Стадии разработки моделей. На базе системного подхода может быть предложена и некоторая последовательность разработки моделей, когда выделяют две основные стадии проектирования: макропроектирование и микропроектирование.
На стадии макропроектированияна основе данных о реальной системеSи внешней средеЕстроится модель внешней среды, выявляются ресурсы и ограничения для построения модели системы, выбирается модель системы и критерии, позволяющие оценить адекватность моделиМреальной системыS. Построив модель системы и модель внешней среды на основе критерия эффективности функционирования системы в процессе моделирования выбирают оптимальную стратегию управления, что позволяет реализовать возможности модели по воспроизведению отдельных сторон функционирования реальной системыS.
Стадия микропроектированияв значительной степени зависит от конкретного типа выбранной модели. В случае имитационной модели необходимо обеспечить создание информационного, математического, технического и программного обеспечения системы моделирования. На этой стадии можно установить основные характеристики созданной модели, оценить время работы с ним и затраты ресурсов для получения заданного качества соответствия модели процессу функционирования системыS.
Независимо от типа используемой модели Мпри ее построении необходимо руководствоваться рядом принципов системного подхода:1) пропорционально-последовательное продвижение по этапам и направлениям создания модели; 2) согласование информационных, ресурсных, надежностных и других характеристик; 30 правильное соотношение отдельных уровней иерархии в системе моделирования; 40 целостность отдельных обособленных стадий построения модели.
Модель Мдолжна отвечать заданной цели ее создания, поэтому отдельные части должны компоноваться взаимно, исходя из единой системной задачи. Цель может быть сформулирована качественно, тогда она будет обладать большей содержательностью и длительное время может отображать объективные возможности данной системы моделирования. При количественной формулировке цели возникает целевая функция, которая точно отображает наиболее существенные факторы, влияющие на достижение цели.
Построение модели относится к числу системных задач, при решении которых синтезируют решения на базе огромного числа исходных данных, на основе предложений больших коллективов специалистов. Использование системного подхода в этих условиях позволяет не только построить модель реального объекта, но и на базе этой модели выбрать необходимое количество управляющей информации в реальной системе, оценить показатели ее функционирования и тем самым на базе моделирования найти наиболее эффективный вариант построения и выгодный режим функционирования реальной системы S.
- Моделирование
- Модели и моделирование
- Понятие модели и моделирования. Классификация видов моделирования и моделей систем
- Принципы системного подхода в моделировании систем. Общая характеристика проблемы моделирования систем
- Принципы системного подхода в моделировании систем
- Общая характеристика проблемы моделирования систем
- Основные принципы построения экономико-математических моделей
- Математическое описание экономических систем и явлений
- Примеры составления математических моделей
- Основные разделы прикладной математики, применяемые в экономических исследованиях
- Процесс построения математических моделей
- Определение задачи исследования. Обследование объекта и построение сценариев его функционирования
- Обеспечивающие системы n-го ранка
- Основные системы n-го ранка
- Формирование концептуальной модели
- Существенных факторов
- Построение и анализ математической модели
- Методы поиска решений на моделях
- Методы поиска оптимальных решений для однокритериальных моделей с детерминированными факторами
- Поиск решений при наличии в модели случайных и неопределенных факторов
- По результатам для дискретных факторов
- Методы многокритериальной оптимизации
- Имитационное моделирование экономических систем
- Особенности и принципы построения имитационных моделей
- Реализация имитационных моделей на эвм
- Принципы оценки адекватности и точности моделей